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Bref résumé de la thèse  

 

L’objet de cette thèse est d’analyser comment traiter le problème de renouvellement 

du parc en tenant compte de la durabilité, tout en se plaçant dans une perspective de 

gestion du risque. 

Cette thèse apporte une double contribution, au niveau de la politique de gestion du 

parc et à celui de la méthode utilisée pour appliquer cette politique. Au niveau de la 

politique, elle étudie l’effet de l’adoption de nouveaux véhicules, disposant d’une 

technologie de pointe, sur le risque et le coût escompté du système de gestion du 

parc. 

Au niveau méthodologique, cette thèse apporte trois contributions. Tout d’abord, elle 

comporte une étude de la nouvelle formulation du problème du parc en utilisant une 

programmation stochastique à deux étapes et à multiples étapes et une valeur à 

risque conditionnelle (CVaR), prenant ainsi en considération l’incertitude dans le 

processus de décision. En outre, elle élabore une formulation récursive de la CVaR, 

qui tient compte de la cohérence dans le temps, et elle examine ses propriétés de 

convergence, dans un cadre dynamique. Enfin, la thèse modélise l’impact sur le 

profit et le risque de l’utilisation des contrats à option sur le problème de 

remplacement du parc. 
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ABSTRACT 

The purpose of this thesis is to conduct an analysis of how the fleet replacement 

problem can be addressed from both sustainability and risk management 

perspectives, simultaneously. 

The contribution of this thesis has two components, in fleet management policy and 

in the method used to apply it. At a policy level, this thesis addresses the effect of 

adoption of new technological advanced vehicles on the risk and expected cost of the 

fleet management system.  

At a methodological level, this thesis presents three contributions: First, it studies the 

new formulation of the fleet problem by using a two stage and a multi stage 

stochastic programming and conditional value at risk (CVaR), which accounts for 

the uncertainty in the decision process. Second, it models a recursive formulation of 

CVaR, which takes into account the time consistency, and studies its convergence 

properties, in a dynamic setting. Third, it models the impact on profit and risk from 

using option contracts on the fleet replacement problem. 
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Résumé détaillé de la thèse  
 

Alors que nous entamons le 21e siècle, le monde est confronté à deux défis qui vont 

définir notre avenir : la perspective de la crise d’un changement climatique 

catastrophique et la lutte contre la pauvreté dans le monde. Nous sommes confrontés 

en outre, à court terme, à la plus sévère crise financière et économique depuis les 

années 80. La crise financière a été causée par une gestion inappropriée du risque 

dans le secteur financier. De même, la gravité de la crise climatique va dépendre de 

notre gestion des risques liés aux gaz à effet de serre. Ces risques toutefois sont 

fondamentalement différents. Nos actions pour juguler la crise financière vont se 

traduire par la perte minime ou un peu plus conséquente de quelques points de PIB et 

par une durée de crise d’un an ou deux ou d’une décennie. Les conséquences des 

erreurs dans la gestion de la crise climatique sont d’une toute autre ampleur, et sont 

susceptibles d’avoir des suites majeures et irréversibles pour la vie sur cette planète. 

Chaque fois que nous brûlons des combustibles fossiles tels que le gaz, le charbon ou 

le pétrole, du CO2 se répand dans l’atmosphère. Dans le cycle naturel du carbone, le 

CO2 est réabsorbé par des plantes et des arbres. Mais nous brûlons du pétrole 

contenant du CO2  coincé sous la surface de la terre depuis des millions d’années, et 

nous agissons si vite que les plantes et les arbres vivant actuellement n’ont aucune 
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chance de l’absorber (et le déboisement des forêts tropicales n’améliore pas les 

choses). Ce supplément de CO2 dans l’atmosphère a pour effet d’augmenter la 

température globale de la planète (le réchauffement planétaire). Alors que les 

températures moyennes mondiales augmentent, au quotidien le climat est en train de 

changer de manière imprévisible (depuis les inondations et les ouragans jusqu’aux 

vagues de chaleur et aux sécheresses). Afin de tenter de réduire le risque de 

phénomènes climatiques toujours plus extrêmes, il nous faut réduire notre 

combustion de carburant fossile. Aussi, durant les 25 dernières années, les 

gouvernements ont-ils commencé à admettre que le développement économique 

actuel ne pouvait pas se poursuivre sans avoir une incidence significative sur les 

générations futures. Par exemple, aujourd’hui, nous voyons l’émergence d’une 

tendance entre les pays à l’échange de quotas d’émission pour la gestion des gaz à 

effet de serre (par exemple, Sainathan et al., 2013). 

Le Rapport Brundtland (WCED, 1987) a reconnu que le développement économique 

actuel ne pouvait plus compromettre les besoins de développement des générations 

futures. L’objectif de ce concept de développement durable a été d’encourager les 

gens à s’impliquer pour comprendre la façon dont le développement économique 

peut affecter à la fois l’environnement et la société. Ainsi, la question de savoir 

comment répondre aux besoins du présent sans compromettre la capacité des 

générations futures de répondre à leurs besoins comporte d’importants aspects 

environnementaux, économiques et sociaux. Il s’agit de la question de la durabilité, 

qui constitue sans doute le plus grand défi de notre génération et de la suivante (par 

exemple, Schiffer, 2008). Dans l’environnement mondial d’aujourd’hui, afin de 

relever ce défi, il faut un engagement du secteur privé et du secteur public, des 

organisations non gouvernementales et enfin de tous les individus. En raison de 
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l’émergence de ces préoccupations, il y a une pression sur les entreprises pour 

qu’elles diminuent leur impact sur l’environnement, qu’elles s’appliquent à 

extérioriser un triple résultat (au niveau des gens, du profit et de la planète) et par 

conséquent qu’elles réduisent leurs émissions de dioxyde de carbone. Les activités 

de base qui contribuent à ces émissions sont la fabrication et le transport de produits, 

le recyclage, la refabrication des produits utilisés, et la conception de nouveaux 

produits (Kleindorfer et al., 2005). 

En outre, la volatilité récente du prix des carburants fossiles et l’accroissement des 

préoccupations liées au réchauffement planétaire ont mis en évidence la nécessité de 

réduire la consommation d’énergie et de carburants fossiles. Le secteur du transport 

constitue une source importante d’augmentation des émissions de CO2 (par exemple, 

Schiffer, 2008). La raison du haut niveau de ces émissions réside dans une forte 

dépendance à l’égard des carburants fossiles. Par conséquent, les nouvelles 

technologies, telles que les véhicules hybrides et les véhicules électriques (VE) sont 

considérées comme une alternative permettant de réduire les niveaux de 

consommation de carburants fossiles et d’émission de gaz à effet de serre. Même 

lorsqu’on tient compte de la génération d’énergie utilisée dans la chaîne 

d’approvisionnement pour la production de l’électricité utilisée afin de charger les 

batteries des VE, les émissions totales des VE demeurent inférieures à celles issues 

des véhicules utilisant des carburants fossiles, surtout dans les pays développés. 

Les VE possèdent deux avantages par rapport aux véhicules à moteur à combustion 

interne. Le premier et le plus important, c’est leurs plus faibles émissions de CO2, 

car l’électricité fournie pour charger les batteries des VE peut être générée à l’aide de 

sources d’énergie renouvelables, telles que l’énergie éolienne ou solaire. Les VE 
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disposent d’un deuxième avantage : ils sont moins tributaires des incertitudes liées à 

l’approvisionnement en carburants fossiles (telles que les fluctuations du prix du 

pétrole brut) car le prix de l’électricité par kilomètre est nettement inférieur à celui 

de l’essence ou du diesel. 

Malgré les points forts des VE cités ci-dessus, nous ne sommes qu’au début du 

processus d’adoption de ces véhicules, pour deux raisons principales. La première 

concerne «l’anxiété liée à l’autonomie», c’est-à-dire la peur associée au kilométrage 

limité effectué par les VE avant d’être obligé de les recharger (par exemple, Eberle 

et Helmolt, 2010). Actuellement, les VE chargés disposent d’une autonomie limitée 

à environ 150 km, et il faut compter plusieurs heures pour recharger les batteries. Le 

coût de la batterie constitue la deuxième raison. La batterie est la composante la plus 

onéreuse d’un VE, d’où la différence du coût d’un VE par rapport à celui d’un 

véhicule utilisant un carburant fossile. En outre, même si les coûts de 

fonctionnement d’un VE sont bien inférieurs à ceux d’un véhicule utilisant un 

carburant fossile, les coûts fixes (liés à la location ou à l’acquisition) sont 

actuellement très élevés. 

Pour contribuer à l’amélioration du transport durable, la gestion du parc joue un rôle 

important de deux manières. D’abord, elle exerce un effet économique direct sur 

l’investissement, la maintenance et les frais de fonctionnement. En second lieu, elle 

aide à diminuer les émissions en dioxyde de carbone de l’entreprise. En outre, même 

si la comparaison des coûts relatifs des différents types de véhicule est de bien des 

points de vue une question d’optimisation assez évidente, il existe d’autres difficultés 

à résoudre qui font de cette gestion un sujet de recherche intéressant pour la gestion 

durable (voir la Figure 1.1). Parmi ces difficultés, figurent les incertitudes quant au 
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prix du marché de différentes sources d’énergie, au prix des émissions de carbone, à 

la consommation de carburant, et au kilométrage effectué par les véhicules. Donc, il 

faut impérativement examiner le problème de la gestion durable d’un parc sous 

l’angle des incertitudes à l’aide de méthodes de gestion du risque (Figure 1.1). 

 

 

 

Figure 1.1 Système d’aide à la décision pour le gestionnaire de parc 

La thèse est ensuite résumée, les conclusions principales sont tirées, et l’accent est 

mis sur les contributions principales de cette thèse. En premier lieu, nous examinons 

les contributions principales. La contribution de cette thèse peut être divisée en deux 

composantes : la politique de gestion de parc et la méthode utilisée afin d’appliquer 

cette politique. 

Contributions  

Au niveau de la politique, cette thèse examine l’effet de l’adoption de nouveaux 

véhicules disposant d’une technologie de pointe sur le risque et le coût escompté du 
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système de parc des entreprises. L’idée de traiter cette question provient du besoin 

d’étudier, d’un point de vue économique, l’adoption de nouveaux véhicules de 

pointe dans un grand nombre d’entreprises en Europe et aux Etats-Unis. Etant donné 

que les VE n’en sont encore qu’à leurs débuts en termes de développement et du fait 

qu’ils nécessitent des investissements d’un coût élevé, la présente étude traite cette 

question du point de vue du risque, une approche qui n’a jamais été utilisée 

auparavant. 

Au niveau méthodologique, cette thèse apporte trois contributions. Tout d’abord, aux 

chapitres 3 et 4, elle présente une nouvelle méthode d’approche du problème du parc 

en s’appuyant sur la programmation stochastique à deux étapes et à étapes multiples 

et sur la CVaR, qui tient compte des incertitudes dans le processus de prise de 

décision. En d’autres termes, l’une des contributions des chapitres 3 et 4 est 

l’examen du risque et la réduction maximale du coût à l’aide de la CVaR, dans un 

modèle de programmation stochastique, dans le cadre de la fonction objective de 

l’entreprise, ce qui n’a jamais encore été étudié dans la littérature. Comme, 

précisément, l’objectif de ce programme stochastique est de réduire au maximum le 

coût et le risque, nous avons simultanément réduit au maximum la moyenne 

pondérée des coûts totaux escomptés et la CVaR. Ce qui veut dire qu’en changeant 

un paramètre de la relation exogène pour différentes combinaisons des coûts totaux 

escomptés et de la CVaR, les risques à l’horizon du plan sont réduits au maximum, 

selon qu’on mette davantage l’accent sur le coût ou sur le risque. 

En second lieu, au chapitre 4, une formulation récursive de la CVaR est modélisée. 

Elle tient compte de l’uniformité dans le temps et des propriétés convergentes dans 

un cadre dynamique. En effet, notre approche diffère de celle de Shapiro (2009, 
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2011), dans laquelle la configuration conditionnelle du risque a été utilisée afin de 

satisfaire le principe de l’uniformité dans le temps, alors que nous fournissons une 

formulation récursive de la CVaR pour une arborescence des scénarios, calculant 

explicitement la CVaR du nœud parent comme une fonction de la CVaR et les 

attentes conditionnelles escomptées du coût extrême des nœuds enfants respectifs. 

Notre approche diffère également de l’approche objectif-centile de Boda et Filar 

(2006), qu’ils appliquent afin d’examiner l’uniformité dans le temps. Donc, notre 

contribution méthodologique exposée au chapitre 4 revient à suggérer une nouvelle 

formulation de la CVaR uniforme dans le temps. 

Puis, au chapitre 5, le modèle est étendu dans un cadre dynamique pour la CVaR afin 

de prendre en compte la souplesse dans le problème de remplacement du parc en 

ayant recours à des contrats avec différentes options. En effet, il existe une lacune 

dans la littérature, qui consiste à considérer le problème du remplacement durable du 

parc en tenant compte de la flexibilité inhérente aux contrats de location du fait de 

l’existence d’incertitudes en ayant recours à l’analyse par options réelles. Notre 

approche dans cette thèse diffère de celle de Kleindorfer et al. (2012), en termes de 

paramètres stochastiques dans le modèle et d’options différentes pour les contrats de 

location. Ceci constitue également une nouvelle approche dans la littérature, qui tient 

compte de l’interaction entre l’utilisation de contrats et la CVaR dans le système de 

gestion du parc, ce qui n’avait pas été analysé jusqu’à présent. En outre, au chapitre 

5, pour l’évaluation des contrats avec option, on examine l’impact des changements 

technologiques concernant les batteries des VE. Puis, les conclusions principales 

sont tirées. 
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Conclusion  

Au chapitre 2, nous avons effectué une analyse approfondie de la littérature pour 

plusieurs approches du problème de remplacement de l’actif que constitue le parc. 

Plus précisément, lorsque nous examinons les décisions des gestionnaires de parc 

dans les entreprises portant sur le remplacement des véhicules conventionnels, et 

l’impact des technologies nouvelles sur l’adoption de politiques de remplacement 

optimal, le gestionnaire du parc doit aborder plusieurs questions essentielles. Tout 

d’abord, quelles sont les technologies s’appliquant aux véhicules automobiles qui 

réalisent les meilleures performances en termes de coût-efficacité ? Ensuite, quel est 

l’impact des aléas du marché sur les décisions de remplacement des véhicules ? 

Enfin, quelles sont les meilleures pratiques pour le remplacement des véhicules dans 

l’avenir ? Le modèle que nous proposons au chapitre 2 peut pallier certains 

inconvénients des méthodes actuelles de remplacement. En premier lieu, il tient 

compte de la variabilité du coût de fonctionnement (coût d’exploitation) des 

véhicules. En effet, la majorité des paramètres du modèle sont liés au temps et les 

paramètres du coût se divisent en fixes et variables. En conséquence, l’utilisation 

annuelle escomptée (le kilométrage total annuel) est considérée comme une variable 

chaque année. De plus, le coût des émissions de CO2 (par exemple, Moreira et al., 

2010) est également pris en compte. En outre, à la différence de la plupart des 

articles publiés dans la littérature, l’option de location est considérée comme un 

moyen de financement des véhicules dans le système de gestion du parc, ce qui est 

couramment utilisé dans la plupart des systèmes de logistique commerciale. En 

prenant en considération la location des nouveaux véhicules au début de chaque 

année pour une durée donnée (4 à 5 ans), un bon nombre de problèmes vont être 

résolus en raison de la jeunesse de la structure du système de parc : ceux concernant 
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l’âge optimal (la vie économique) des véhicules et le rapport entre l’âge et 

l’utilisation. Toutefois, le modèle nécessite un certain nombre de données déjà 

réalisées et prévisionnelles, telles que le prix du carburant, la consommation de 

carburant et le prix du CO2, l’utilisation des véhicules sur plusieurs années. Ces 

données doivent être rassemblées, actualisées et traitées en utilisant une base de 

données moderne. Cette base de données, allant de pair avec le modèle proposé, 

donne un système d’aide à la décision pour une gestion stratégique du parc de toute 

entreprise de transport. 

Aux chapitres 3, 4, et 5, les facteurs de risque examinés sont le prix du carburant et 

du CO2, le kilométrage effectué, et la consommation de carburant. Au chapitre 3, 

nous avons envisagé une répartition différente des facteurs de risque par rapport à 

celle retenue aux chapitres 4 et 5, car les modèles sont étudiés dans des contextes 

différents. En outre, au chapitre 3, nous avons examiné la location d’un seul véhicule 

de marques différentes, et au chapitre 4, nous avons analysé l’interaction entre les 

véhicules d’un parc avec différentes capacités. Enfin, tous les véhicules utilisés dans 

le parc sont loués. 

Au chapitre 3, nous avons évalué l’importance des facteurs de risque pour les VE et 

les véhicules diesel et comparé la valeur de la CVaR des VE avec la technologie 

diesel pour chaque cas de facteur de risque. Les résultats indiquent que, lorsqu’on 

examine chaque processus stochastique séparément, le facteur de risque le plus 

important pour un véhicule diesel est le kilométrage parcouru, le deuxième facteur 

étant la consommation de carburant, et le troisième le prix du carburant. Dans le cas 

des VE, le kilométrage parcouru constitue le facteur de risque le plus important, 

suivi du prix du carburant et enfin du prix du CO2. En outre, pour chaque processus 
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stochastique portant sur le prix du carburant, le kilométrage parcouru et la 

consommation de carburant, la valeur CVaR pour les VE est inférieure à celle des 

véhicules à carburant fossile, à certaines conditions. Par ailleurs, lorsqu’on examine 

tous les processus stochastiques conjointement, la location d’un véhicule diesel 

plutôt que d’un véhicule électrique diminue le coût total escompté et augmente le 

risque associé en raison de l’incertitude sur le prix du CO2, le prix du carburant, le 

kilométrage parcouru, et la consommation de carburant. De plus, l’examen conjoint 

de tous les processus stochastiques montre que le risque du modèle dans son 

ensemble est inférieur à la somme des risques de chaque processus stochastique. 

Enfin, en comparant le coût total au kilomètre pour chaque scénario de distance 

parcourue (par mois) et en introduisant d’autres facteurs d’incertitude dans le modèle 

d’aide à la décision, on peut arriver à la conclusion que, pour les véhicules à 

kilométrage élevé, le VE constitue le choix le plus approprié. 

Au chapitre 4, nous avons examiné la question de la gestion du risque lorsqu’on a 

recours, dans le système de gestion du parc, à différents types (capacité) de 

véhicules, utilisant différentes technologies. La capacité constitue une caractéristique 

importante. En effet, selon l’usage, les techniciens de l’entreprise doivent transporter 

du matériel et, par conséquent, disposer d’un véhicule d’une capacité suffisante. 

Nous examinons trois types de véhicule de capacités différentes. Ainsi, les 

ingénieurs électriciens ont besoin de fourgonnettes dont la capacité de charge est 

suffisante. Nous considérons que les petites fourgonnettes pèsent 300 kg, alors que 

les fourgonnettes pèsent 500 kg et ont une plus grande capacité. Les fourgonnettes de 

taille moyenne peuvent être utilisées pour tous les usages, mais il y en a très peu, car 

elles sont nettement plus onéreuses à l’achat et au niveau de l’entretien. Nous avons 

effectué une analyse typologique pour chaque type de véhicule. Dans ce cas, chaque 
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véhicule génère un risque différent, selon ses caractéristiques. Pour cette raison, nous 

les avons classés (regroupés) à partir de deux facteurs de risque importants, le 

kilométrage parcouru et la consommation de carburant, puis nous avons étudié le 

comportement de chaque catégorie, pour chaque type de véhicule et chaque type de 

technologie employée. En outre, nous avons comparé le comportement de chaque 

groupe au cas où il n’y a pas de regroupement (regroupement combiné). Au chapitre 

4, nous avons également examiné les véhicules hybrides. Les principaux résultats du 

modèle sont les suivants. a) Pour les regroupements à faible kilométrage (750 

km/mois) et à kilométrage moyen (1500 km/mois), en ce qui concerne le rendement 

en carburant pour tous les types de véhicule, le gazole est le choix prépondérant pour 

réduire au maximum le risque ou le coût. b) L’essence est le choix le plus approprié 

pour réduire au maximum le risque et le coût dans les regroupements à faible 

kilométrage et à kilométrage moyen de différents types de véhicules. c) Les modèles 

hybride/essence et hybride/diesel, qui ont également été pris en compte dans le 

modèle, ne peuvent pas concurrencer la technologie du diesel en termes de coût-

efficacité en raison du coût élevé de la location ou de l’achat. Leur taux de 

pénétration selon les différents types de véhicules est de 1 à 3 %. d) Les VE font 

généralement partie des regroupements à kilométrage élevé de véhicules de 

différentes capacités. e) Pour toutes les capacités, le risque par véhicule est réduit par 

le regroupement, par rapport aux regroupements combinés. Toutefois, on ne peut pas 

diminuer le coût prévu par véhicule en effectuant des regroupements des catégories à 

kilométrage élevé. La raison est la suivante : l’adoption des VE, pour les 

regroupements à kilométrage élevé, augmente le coût prévu par véhicule. En outre, 

nous avons un certain pourcentage de véhicules diesel et à essence, et ces véhicules 

ne sont pas économiques pour des kilométrages élevés. 
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Au chapitre 5, nous avons traité une autre question importante, relative à la location 

des véhicules. Les établissements de location et les (grandes) entreprises négocient 

des contrats de location et les conditions de ces derniers. Ensuite, après avoir négocié 

avec plusieurs établissements de location, une entreprise choisit celui qui obtient le 

contrat. Actuellement, un contrat de location commercial a généralement une durée 

de quatre ans dans le cas de l’entreprise que nous avons analysée. Toutefois, on 

s’attend à beaucoup de développements avec les VE et les modèles améliorés qui 

vont devenir disponibles dans les années à venir (par exemple, l’amélioration des 

batteries). Aussi, les entreprises peuvent-elles préférer attendre afin d’obtenir un 

meilleur modèle de VE d’ici quelques années. Par ailleurs, d’autres technologies 

comme le diesel et l’essence, en raison des interventions de l’Etat, de l’augmentation 

du prix des carburants fossiles, entre autres causes, seront peut-être moins 

économiques à l’avenir. On pourrait également négocier des contrats de location 

d’une durée plus courte pour les VE. Toutefois, cette approche donne lieu à une 

dépréciation plus importante et entraîne donc des frais mensuels de location plus 

élevés pour les VE, ce qui les rend moins économiques. En revanche, pour les 

voitures diesel et à essence, si une forte augmentation du prix des carburants fossiles 

intervenait, le coût de fonctionnement deviendrait élevé, et des contrats d’une durée 

de deux ans pourraient être judicieux. Un autre aspect qui mérite d’être souligné : 

dans le cas des véhicules diesel et à essence, en raison de leur technologie mature, le 

pouvoir de négociation du prix de location par les entreprises est plus important, 

même pour les contrats d’une durée relativement courte. Pour cette raison, nous 

avons étendu le modèle en incluant plusieurs contrats à option. La première formule, 

c’est le contrat de base sans option d’une durée de quatre ans. Toutefois, si la voiture 

est rendue, les pénalités sont très élevées. La deuxième possibilité, c’est la location 
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du véhicule avec l’option de le rendre en versant de faibles pénalités. Enfin, la 

troisième possibilité, c’est de louer le véhicule avec une option d’échange permettant 

de rendre le véhicule et d’en choisir un autre en s’acquittant de faibles pénalités. 

Afin d’évaluer les contrats de location mentionnés ci-dessus, nous pouvons recourir 

à la théorie des options réelles avant de développer notre modèle dynamique, fondé 

sur nos recherches précédentes, pour déterminer le nombre optimal de voitures 

pendant la période de location. Nous avons examiné également le développement 

technologique des batteries des VE prévu au cours de la durée des contrats dans une 

optique de politique de remplacement optimale. Les principales conclusions de cet 

examen sont les suivantes. a) Le recours à des contrats assortis d’options diminue la 

CVaR globale et le coût escompté. En d’autres termes, le recours à tous les contrats 

dans le système de gestion du parc permet de minimiser le coût total et la CVaR. b) 

La technologie prédominante pour la location est celle des VE lorsqu’on prend en 

compte l’effet de la technologie. Cependant, lorsqu’on prend en considération le 

modèle sans le développement technologique des VE, la technologie choisie de 

façon prédominante est celle du diesel. On retient la technologie de l’essence 

lorsqu’on estime qu’il n’y aura pas de développement technologique pour les VE 

dans un petit nombre de cas. c) Si nous comparons également la CVaR et le coût 

escompté dans deux cas avec et sans changement technologique au niveau des VE, 

pour chaque coefficient correspondant pour le rapport entre la valeur et le prix d’une 

option, nous arrivons à la conclusion qu’il y a une diminution des valeurs de la 

CVaR et du coût escompté, pour toutes les valeurs du coefficient, lorsque le 

développement technologique des VE est pris en compte. En outre, à partir des 

précédentes recherches, nous sommes arrivés à la conclusion que plus il y avait de 
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VE dans le système de gestion du parc plus la CVaR était faible. Ainsi, la réduction 

de la CVaR est plus forte que le coût escompté.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

During the last 25 years governments have started to recognize that the current 

economic development could not be sustained without significant impacts upon 

future generations. For example, nowadays we see the emerging trend among nations 

towards the use of emissions trading in managing greenhouse gases (e.g., Sainathan 

et al., 2013). 

The Brundtland Report (WCED, 1987) recognized that economic development 

which is taking place today could no longer compromise the development needs of 

future generations. This concept of sustainable development aimed to encourage 

people to be involved for realizing on how the economic development can affect 

both on the environment and on the society. So, the question of how to meet the 

needs of the present without compromising the ability of future generations to meet 
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their needs which has important environmental, economic, and social dimensions, 

i.e., sustainability, is arguably the greatest challenge of our generation and the next 

(e.g., Schiffer, 2008). Due to these emerging concerns, companies are under pressure 

to reduce their impact on the environment, to engage in measuring the triple bottom 

line (people, profit, and planet), and consequently, to reduce their resulting carbon 

footprint. Basic activities that contribute to this footprint are the production and 

transport of products, recycling, remanufacturing of used products, and designing of 

new products (Kleindorfer et al., 2005).  

In addition, the recent volatility of fossil fuel prices, and the increasing concerns 

regarding global warming, have highlighted the need to reduce fossil fuel energy 

consumption. The transportation sector is an important cause of increasing CO2 

emissions (e.g., Schiffer, 2008). The reason for these high emissions is the 

dependency on fossil fuels. As a result, new technologies such as hybrid vehicles and 

electric vehicles (EVs) are considered an alternative to reduce fossil fuel 

consumption and greenhouse gas emission levels. Even when considering the power 

generators used in the supply chain for electricity production to charge EV batteries, 

the total emissions by EVs are still lower than emissions from fossil fuel vehicles, 

especially in developed countries.  

EVs have two advantages over internal combustion engine vehicles: the first, and 

most important, is lower CO2 emissions, as the electricity supplied for the EV battery 

may be generated by renewable energy sources, such as wind or solar power. The 

second is that EVs are not affected as much by the uncertainties arising from the 

supply side of fossil fuels (such as fluctuations in crude oil prices) as the cost of 

electricity, per mile, is less than that of gasoline or diesel. 
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Despite the aforementioned benefits of EVs, their adoption is still in the infancy 

stage, for two main reasons. The first is “range anxiety”, which is the fear associated 

with the limited mileage these vehicles may be driven before they need to be 

recharged (e.g., Eberle and Helmolt, 2010). Currently, EVs have a limitation of 

about 100 miles on a single charge, and it takes several hours to charge their 

batteries. The second factor is the cost of the battery, which is the most expensive 

component of EVs, resulting in the cost difference between EVs and fossil fuel 

vehicles. In addition, although the running cost of an EV is much less than that of a 

fossil fuel vehicle, the fixed cost (both with leasing or ownership) is currently very 

high. 

Fleet management is an important effort to help in improving sustainable 

transportation in two ways. First, it has a direct economic effect on investment, 

maintenance, and operating costs. Second, it is able to help in reducing the carbon 

footprint in the company. In addition, whereas the comparison of the relative cost of 

the different types of vehicles is, in many aspects, a relatively obvious optimization 

problem, there exist additional complexities that make it an interesting research topic 

for sustainable management (see Figure 1.1). These include the uncertainties in 

market prices for various sources of energy, carbon emission prices, fuel 

consumption, and the mileage driven by the vehicles. Thus, it is essential to view the 

problem of sustainable fleet management from an uncertainty perspective using risk 

management methodologies (Figure 1.1).  
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Figure 1.1 Decision Support System for Fleet Manager 

The purpose of this thesis is to conduct an analysis of how the fleet replacement 

problem can be addressed from both sustainability and risk management 

perspectives, simultaneously. 

The contribution of this thesis has two components, in fleet management policy and 

in the method used to apply it. At a policy level, this thesis addresses the effect of 

adoption of new technological advanced vehicles on the risk and expected cost of the 

fleet management system.  

At a methodological level, this thesis presents three contributions: First, it studies the 

new formulation of the fleet problem by using a two stage and a multi stage 

stochastic programming and conditional value at risk (CVaR), which accounts for 

the uncertainty in the decision process. Second, it models a recursive formulation of 

CVaR, which takes into account the time consistency issue, and is called Recursive 

Expected CVaR (RECVAR). It is a new time consistent risk measure in the sense 

that it takes account the risks that happen in the future. Third, it models the impact 

on profit and risk from using option contracts on the fleet replacement problem. 
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This thesis is organized as follows. In Chapter two we provide a comprehensive 

literature review on the asset (fleet) replacement problem and a general introduction 

and survey of risk management and its applications especially in operations as well 

as a literature survey on sustainable operations. Specifically, we introduce a general 

classification of fleet replacement models, and we consider different approaches for 

replacement decisions. Then, we focus on parallel replacement problem, which is the 

core fleet replacement idea of this thesis. In addition, we extend the parallel 

replacing model, in the leasing context. In addition, we extend the parallel replacing 

model, in the leasing context. In the risk management section we introduce CVaR 

and VaR and their properties and then we provide a broad literature on sustainable 

operations. Finally, we conclude the Chapter by practical challenges for the 

replacement problem. 

In Chapter three, first we provide a two-stage stochastic programming model for the 

replacement policy. This is a static policy in which decisions are made at the first 

stage and we study one type of vehicle with different brands. We also present some 

analytical results for comparing the CVaR of fossil fuel vehicles and EVs, taking 

into account the volatility in CO2 and fuel prices, fuel consumption, and mileage 

driven. Finally, we validate the analytical results by a real case study and we 

conclude the Chapter. 

In Chapter four we extend the work in Chapter three to a multi stage setting. In this 

context the decisions are updated at every period in which the interaction between 

different types of vehicles with different capacities by using clustering analysis has 

been studied. As a methodological contribution, in this Chapter, we present a new 

recursive formulation of CVaR which is time consistent in a dynamic setting. 
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Additionally, by using clustering analysis we consider the portfolio effect of using 

different technologies, on the fleet system, on CVaR, and on the expected cost. 

Finally, we present the analytical results for considering the portfolio effect and time 

consistency of new formulation of CVaR and we apply the model in a real case 

study. 

In Chapter five we extend the work presented in Chapter four by considering flexible 

leasing contracts. In this framework decisions are updated at every period with 

different options. Indeed, in this context, we have a full flexibility through using 

contracts with different options. First, we provide a literature review on using real 

options. Then, we extend our previous model, in Chapter four, by using CVaR and 

different options contracts which are base (contract with no option), return, and 

swap. In Chapter five we also consider the technological development of the 

batteries expected during the planning horizon on the optimal replacement policies. 

Finally, we present analytical results to explain how option contracts affect the 

CVaR, and total expected cost which we apply in the analysis of a case study.  
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CHAPTER 2 

 

 
Literature Review 

Le chapitre 2 offre une analyse détaillée de la littérature consacrée au problème du 

remplacement de l’actif que constitue le parc. Plus précisément, nous apportons une 

classification générale des modèles de remplacement du parc et nous étudions 

différentes approches de la décision de remplacement. Puis nous abordons le 

problème du remplacement parallèle, qui est l’idée de base de cette thèse. En outre, 

nous étendons le modèle du remplacement parallèle, dans le contexte de la location 

et enfin nous concluons ce chapitre en exposant des difficultés pratiques liées au 

problème du remplacement. 

In this Chapter first we provide a broad literature survey on the sustainable 

development and its important role in the operations and supply chain management 

fields. Then we consider a detailed history of asset replacement problem which is the 

core idea of this thesis. Finally, we study a general introduction and survey of risk 

management and its applications especially in operations.  
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Section 2.1 presents the literature survey on sustainable operations. Specifically, we 

consider the concepts of sustainable development, green and sustainable supply 

chains, closed supply chains, and reveres logistics which are mostly mentioned in the 

literature. 

In Section 2.2 we provide a classification of different asset replacement models, 

which are broadly classified into serial and parallel models. In addition, we describe 

the different approaches to modelling the asset replacement problem. Then, we 

summarize and discuss the methods used to solve the parallel asset replacement 

problems and suggest a new formulation to address some of their drawbacks. In 

addition we summarize our insights from our literature review on the asset 

replacement problem and we analyze, from a practical perspective, the limitations of 

the asset replacement models. In section 2.3 we provide a general discussion of risk 

management issues in operations and supply chains. Moreover, we define the 

concepts of risk measuring, coherent risk measure, VaR, and CVaR. Finally, we 

conclude the Chapter in Section 2.4. 

 

2.1 A Literature Survey on Sustainable Operations 

The ideas of sustainable development were developed in the 1987 Brundtland Report 

(WCED, 1987), also known as “Our Common Future”. It defined sustainable 

development as a development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs. This is a 

definition that is still widely mentioned in the literature (e.g., Stubbs and Cocklin, 

2008). The studies have considered the impact of environmental concerns on 

operations and the effect on existing operational strategies, such as cost, quality, 
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delivery and flexibility. Increased attention of environmental practices is based 

around the three P’s of people, profit and planet, sometimes referred to as the ‘Triple 

Bottom Line’ (3BL), (Kleindorfer et al., 2005) or the ‘Three Pillars’ (White and Lee, 

2009). Finally, sustainable development tries to compromise the conflict between 

economic, environmental and social issues.  

A sustainable Operations Management (OM) is defined as the sum of abilities and 

concepts which allow companies for implementing and managing its business 

processes in order to obtain some competitive return in its capital assets, without 

compromising the needs of the inner and outer interested firms, in addition to taking 

into account the impact of their operations on people and environment (Kleindorfer 

et al., 2005). As a result, the future operation models will contain a set of extra 

measures according to environmental and political criteria, such as agility and 

sustainability by the firm, in the future and efficient utilization of scarce resources 

(Bayraktar et al., 2007). The inclusion of the sustainability should be accomplished 

by taking into account strategies and actions which will meet the needs of the 

companies and of their several stakeholders, thus protecting, maintaining and 

improving the human and natural resources which may be necessary in the future 

(Labuschagne et al., 2005) 

Studies which are mentioned in the OM literature are mostly in the areas of 

operations strategy, supply chain management, performance management, 

performance measurement and service operations. Base on Labuschagne et al. (2005) 

among the potential research topics, sustainability is more explicitly included, 

emphasizing that the studies on OM will be relevant for analyzing world issues and 

global changes. 
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Next, we consider the literature related to green and sustainable supply chain 

management, reverse logistics which are studied more in the literature of sustainable 

operations. 

2.1.1 Green Supply Chain Management 

Environmentally business practices have been  receiving increasing attention from 

both researchers and practitioners. The number of organizations considering the 

integration of environmental practices into their strategic plans and operations is 

continuously increasing (Sarkis, 2003). Several initiatives have provided incentives 

for organizations to become more environmentally friendly. The concepts related to 

supply chain environmental management (SCEM) or greening the supply chain are 

usually taken into account by industry as screening suppliers for environmental 

performance and then doing business with only those that meet the predefined 

standards (Rao, 2002). 

In green management practices concepts such as environmental management 

systems, cleaner production, and eco-efficiency have been adopted. The factors 

creating the competitive advantage through environmental performance have been 

recognized as market expectations, risk management, regulatory compliance and 

business efficiency (Zhu and Sarkis, 2005). Green supply chain management 

(GSCM) has a fundamental role in ensuring that all of the aforementioned factors are 

addressed (Hutchison, 2003). Environmental impact happens at all stages of a 

product’s life cycle. Therefore GSCM has emerged as an important new concept for 

companies to obtain profit and market share objective by reducing the environmental 

risks and impacts while increasing their ecological efficiency (Van Hock, 1999). 
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2.1.2 Sustainable Supply Chain Management (SSCM) 

The most accepted definition for Sustainable Supply Chain Management (SSCM) is 

that the process of managing the SCM activities with consideration for 

environmental, economical and social issues for improving the long-term economic 

goals of individual organization and its supply chains (Farahani et al., 2009) 

The SSCM activities that have been considered in the literature review are 

represented in Figure 2.1. A brief explanation has been provided for each activity as 

it is related to sustainability concept. 

 

 

Figure 2.1 Sustainable Supply Chain activities  

The first activity in implementing SSCM is creating sustainable design strategies for 

the product and for the package. This activity also includes designing products such 

that it could be recycled or remanufactured. Sustainable design will lead to achieve a 

successful recycling process. Indeed, it assists firms to obtain customers’ respect, 

save money and lead to better products (Toupin, 2001). The interest in implementing 

environmental packaging, choosing appropriate raw materials matching to 

environmental standard, and attention for recycling were observed in the middle of 

the 90’s, (Webb, 1994). 

Production is the second activity that has an important role in creating SSCM. 

Environmental production can be obtained by using clean production method, new 

technology, and reducing raw materials and resources to reach low input, high output 

Design  Production Marketing Transportation  Purchasing
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and low pollution (Baojuan, 2008). Lean manufacturing or the Just-in-time technique 

is the first production strategy that obtained environmental goals or named as 

environmental production (Drumwright, 1994). 

Marketing is also a very important activity in developing and implementing SSCM. 

In order to achieve sustainable marketing, organizations should take into account 

biological balance, and pay more attention to environmental protection (Baojuan, 

2008). Rao (2002) argues that management of wastes in sustainable marketing can 

lead to cost savings and improved competitiveness. In addition, it helps 

organizations improve their relationship with customers, suppliers, and other 

partners. 

Sustainable transportation is another important element in developing effective 

SSCM. Many factors including fuel sources, type of transport, infrastructure, and 

operational and management practices should be considered in developing zero 

pollutant transportation systems. Kam et al. (2006) mention that these factors and the 

dynamics that connect them, determine the environmental impact generated in the 

transportation logistics phase of the supply chain. 

Developing SSCM also needs implementing sustainable purchasing strategies. Liang 

& Chang (2008) mention that sustainable purchasing leads to reducing waste and 

hazardous materials by using environmental raw materials. Furthermore, sustainable 

purchasing plays a significant role in SSCM because it helps organizations in 

reducing the source of pollution and waste by using strategies such as recycling, 

scrapping, dumping, or sorting and using biodegradable packaging (Min and Galle, 

1997). 
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2.1.3 Closed Loop Supply Chains and Reverse Logistics 

Materials, products, components, equipment may go backwards in the supply chain. 

Sometimes, we have faced with products being reworked during manufacturing due 

to unsatisfactory quality, or with good materials or components being returned from 

the production floor because they were leftover after production. Defective products 

may be detected after they have entered the supply chain leads to a pull back of 

products through the chain. 

So, products may reverse direction in the supply chain for several reasons which are  

(e.g., De Brito and Dekker, 2004): (1) manufacturing returns (2) commercial returns 

(3) product recalls (4) warranty returns (5) service returns (6) end-of-use returns (7) 

end-of-life returns. In a normal situation, a product is developed and goes into 

production through the supply chain with the purpose of reaching a customer. 

However, the product may go back in the chain. From this moment on, the chain 

does not deal any longer with supply alone, but also with recovery-related activities. 

We call it as the supply chain loop. As a result, there exists a possible integration of 

forward and reverse flows. In addition, it includes both the closed loop supply 

chains, in which the reverse flow goes back to the original user or original function, 

as well as open loop supply chains. Next, we consider the concept of reverse 

logistics. 

The main goal in reverse logistics is the collection of the products in order to be 

recovered  and the redistribution of the processed goods. Even though this problem 

is like to the standard forward distribution problem, there exist some differences. 

Other definition of reverse logistics is defined by (Carter and Ellram, 1998): Reverse 

Logistics is a process in which companies can be more environmentally efficient 
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through recycling, reusing and reducing the amount of materials used. Indeed, it can 

be viewed as the reverse distribution of materials between channel members. A more 

complete view of reverse logistics contains the reduction of materials in the forward 

system such that fewer materials flow back, reuse of materials is feasible and 

recycling is possible.  

Next, we provide a detailed literature review on asset replacement problem which is 

the core idea of this thesis and then we find the gap which is not addressed in the 

literature of sustainable operations and asset replacement problem in the summary of 

this Chapter. 

 

2.2 Literature on Asset Replacement Problem 

As assets age, they generally deteriorate, resulting in rising operating and 

maintenance (O&M) costs and decreasing salvage values. Moreover, newer assets 

that have a better performance and keep better their value may exist in the 

marketplace and be available for replacement. Therefore, public and private 

organizations that maintain fleets of vehicles, and/or specialized equipment, need to 

decide when to replace vehicles composing their fleet. These equipment replacement 

decisions are usually based on a desire to minimize fleet costs and are often 

motivated by the state of deterioration of the asset and by technological advances 

(Hartman, 2005). 

The general topic of equipment replacement models was first introduced in the 

1950’s (Bellman, 1955). By using dynamic programming, Bellman developed a 

model in order to obtain the optimal age of replacement of the old machine with a 
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new machine. Another important subject was the development of parallel 

replacement models in which management decisions are made for a group of assets 

instead of one asset at the time (Hartman and Lohmann, 1997).  

Vehicle replacement is a key role of fleet provisioning teams. Indeed field services 

operational planning and delivery primarily relies on the assumption that the whole 

engineering force can be furnished with the vehicle appropriate for the service, at 

any time. In practice, the choice of the adequate type, brand, and technology depend 

on internal factors (such as the engineer role, service environment and, but not 

systematically mileage driven), and on external factors (such as fuel price variation, 

government carbon emission incentives, manufacturing costs and maintenance 

costs). Moreover, in addition to risk and field force efficiency, the impact of vehicle 

replacement on customer experience needs to be considered as well. This suggests a 

twofold fleet planning problem that vehicle replacement aims to address: a planned 

fleet portfolio and a rental plan for jeopardy situations.  

In addition, field services enterprises face increasing challenges on carbon emissions 

and cost reduction. This need to transform the way field services operate has an 

impact on the choice of vehicles within a business, affecting the vehicle replacement 

processes. When attempting to optimize the fleet composition, which is essential for 

achieving sustainability, we need to take into account several factors (some of which 

are stochastic and uncertain in nature), which need to be addressed before low-

carbon vehicles are a feasible alternative for field services operations including, for 

example, the intangible reputation of sustainable energy investment, the evolution of 

market prices, strategic partnerships, and risk sharing.  
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2.2.1 The General Classifications of Fleet (Asset) Replacement models 

The models generally can be categorized into two main groups based on different 

fleet (asset) characteristics: homogenous and heterogeneous models. In the 

homogeneous replacement models, a group of similar vehicles in terms of type and 

age, which form a cluster, have to be replaced simultaneously (each cluster or group 

cannot be decomposed into smaller clusters). 

 On the other hand, in the heterogeneous model, multiple heterogeneous assets, such 

as fleets with different types of vehicle, have to be optimized simultaneously. For 

instance, vehicles of the same type and with the same age may be replaced in 

different periods (years) because of the restricted budget for procurement of new 

vehicles. The heterogeneous models are closer to the real world commercial fleet 

replacing problem. These models are solved by Integer Programming and, generally, 

the input variables are assumed to be deterministic (e.g., Hartman, 1999, 2000, 2004; 

Simms et al., 1984; and Karabakal et al., 1994). 

The most popular methodology for solving homogenous models is dynamic 

programming. The advantage of the homogenous model is to take into account 

probabilistic distributions for input variables (e.g., Hartman, 2001; Hartman and 

Murphy, 2006; Oakford et al., 1984; Bean et al., 1984; Bellman, 1955).  

Another important classification of these models regards the nature of the 

replacement process: parallel vs. serial, e.g., Hartman and Lohmann (1997). The 

main difference between parallel replacement analysis and serial replacement 

analysis is that the former takes into account how any policy exercised over one 

particular asset affects the rest of the assets of the same fleet. An example of parallel 

replacement would be a fleet of trucks that service a distribution centre. In this case, 
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the total available capacity is the sum of the individual capacities of the trucks. In the 

serial replacement model the assets operate in series, and consequently, demand is 

satisfied by the group of assets which operate in sequence. An example of this case 

is a production line in which multiple machines must work together to meet a 

demand or service constraint. In general, the capacity of the system is defined by the 

smallest capacity in the production line (Hartman, 2004). 

The following definition of parallel replacement comes from Hartman and Lohmann 

(1997). Parallel replacement deals with the replacement of a multitude of 

economically interdependent assets which operate in parallel. The reasons for this 

economic interdependence are: (1) demand is generally a function of the assets as a 

group, such as when a fleet of assets are needed to meet a customer’s demands; (2) 

economies of scale may exist due to purchasing assets and promoting large quantity 

of purchases; (3) diseconomies of scale may exist with maintenance costs because 

assets which are purchased together tend to fail at the same time; and (4) budgeting 

constraints may require that assets compete for available funds. These 

characteristics, either alone or together, can cause the assets to be economically 

interdependent. 

On the other hand, the serial replacement analysis assumes a certain utilization level 

for an asset throughout its life cycle. Hartman (1999) mentioned that as utilization 

levels affect operating and maintenance costs and salvage values (which in turn 

influence replacement schedules) a replacement solution is not optimal unless 

utilization levels are also maximized. For this reason, an asset utilization level 

depends on the demand requirements, number of assets available, and capacity of 

each asset.  
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Next we present the different approaches to modelling the asset replacement 

problem: the economic life-cycle, the repair cost limit, the comprehensive cost 

minimization, and the issue of decreasing utilization with age. 

 

2.2.2 Approaches for Replacement Decisions 

In this section we review different approaches for deciding the optimal time for asset 

replacement. Throughout this section our goal is to identify replacement candidates 

among fleet or asset members so that the total costs are minimized in the long run. 

 
 

2.2.2.1 Approaches Based on the “Economic Life” 

An intuitive method for identifying replacement candidates is to use a replacement 

standard, such as the age of the equipment. For example, assets older than a standard 

threshold should be replaced. Additionally, a ranking profile can be used in order to 

sort the equipment units by how much they exceed the threshold. For example, Eilon 

et al. (1966) considered a model for the optimum replacement of fork lift trucks. The 

parameters in their model were the purchase price, the resale value and the 

maintenance costs of the equipment. The goal of their model was to derive the 

minimum average costs per equipment year, and the corresponding optimal 

equipment age policy, for a fleet of fork lift trucks. 

Let us now describe the model proposed by Eilon et al. (1966) in more detail. Let TC 

(t) be the total average annual (or per time period) cost of an existing truck, 

assuming it is replaced at age (time) t. Let A stand for the acquisition cost of new 

truck, S (t) be the resale value of the existing truck at age t, C (t) be the accumulated 
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depreciation costs up to time t, τ  be the rate of taxation, and f (t) be the maintenance 

costs of a truck, t years after acquisition. Then the total average annual cost of an 

existing truck is represented by (2.1).     

 

1 1
( ) ( ( ) ( ) ) ( )

0

t
TC t A S t C t f t dt

t t
τ= − − + ∫                                                                          (2.1) 

 

The first term in equation (2.1) represents the average capital costs involved in the 

acquisition of the existing truck, taking into account the savings from resale value 

and tax savings from depreciation. The second term in equation (2.1) expresses the 

total average maintenance costs for the existing truck over the years up to the present 

time t. The minimum total average annual costs, as a function of t, determines the 

optimal replacement time.The economic life of an asset (also known as service life 

or lifetime of the asset) is defined as the age which minimizes the Equivalent Annual 

Cost (EAC) of owning and operating the asset. The EAC includes purchase and 

Operating and Maintenance (O&M) costs minus salvage values. Generally, O&M 

costs increase with age while salvage values decrease with age. As a result, the 

optimal solution represents a trade-off between the high costs of replacement 

(purchase minus salvage) versus increasing O&M costs over time. 

The concept of economic life is easier to describe graphically. In Figure 2.1, adapted 

from Harman and Murphy (2006), it is assumed that the initial purchase cost is 

$100000, with the salvage value declining 20% per year. O&M costs are expected to 

increase 15% per year after $11500 in the first year. Figure 2.2 illustrates the 

annualized O&M and capital costs and their sum (EAC) for each possible of age 
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assuming an annual interest rate 8% (Hartman and Murphy, 2006). Once the optimal 

economic life is determined, the asset should be continuously replaced at this age, if 

we assume repeatability and stationary costs (Hartman and Murphy, 2006). 

In order to obtain the EAC, when retaining an asset for n periods, all costs over the n 

periods must be converted into n equal and economically equivalent cash flows. 

Then, the economic life of an asset is typically computed by calculating the EAC of 

retaining an asset for each of its possible service lives, ages one through n, and the 

minimum is chosen from this set (e.g., Hartman, 2005; Weissmann et al., 2003; 

Hartman and Murphy, 2006). 

 

 

Figure 2.2: Annualized purchase cost, O&M cost, and Total (EAC) costs  

 

Yatsenko and Hritonenko (2011) have also considered the economic life (EL) 

method of asset replacement taking into account the effects technologic 

improvements which decrease maintenance costs, new asset cost, and salvage value. 

They have shown that, in general, the EL method renders an optimal replacement 



www.manaraa.com

35 

policy when the relative rate of technological change is less than one percent. 

However, for larger rates, they recommend annual cost minimization over the two 

future replacement cycles, which was earlier proposed and implemented by Christer 

and Scarf (1994). 

 

2.2.2.2 Approaches that Consider a Repair Cost Limit 

Another replacement criterion is the repair cost. When a unit requires repair, it is 

first inspected and the repair cost is estimated. If the estimated cost exceeds a 

threshold, which is known as “repair limit” then the unit is not repaired but, instead, 

is replaced. Repair limits have long been used and their values have often been based 

on the principle that no more should be spent on an item than it is worth.  

This criterion is indeed an important one. There is evidence that repair cost limit 

policies have some advantages in comparison with economic age limit policies. For 

example, Drinkwater and Hastings (1967) analysed data for army vehicles. They 

obtained the repair limiting value in which the expected future cost per vehicle-year 

when the failed vehicle is repaired is equal to the cost in which the failed vehicle is 

scrapped and a new one is substituted. Specifically, they defined two options: a) 

repair the vehicle and b) scrap the vehicle and replace it by a new one. This is called 

a repair decision. We now present the model used for the repair decision in more 

detail, following Drinkwater and Hastings (1967). 

Consider a vehicle at age t which requires repair. If we select option a), to repair the 

vehicle, the future cost per vehicle-year is represented by (2.2) in which r is the 

present cost of repair, c(t) is the expected total cost of future repairs, and l(t) is the 

expected remaining life of the vehicle. 
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r c t

l t

+                                                                                                                     (2.2) 

                                                                                   

If we select option b), to scrap the vehicle, the expected future cost per vehicle-year 

will be δ, which is defined by the average cost per vehicle-year up to age t. 

Obviously, the repairing decision (option a) will be selected if (2.3) holds. 

Otherwise, the scrapping decision is chosen. Therefore, the critical value of r is 

determined by equation (2.4) in which the future cost per vehicle-year equals the 

average cost per vehicle-year up to age t. As a result, the optimal repair limit at time 

t, r*(t), is determined by (2.5).  
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*( ) ( ) ( )r t l t c tδ= −                                                                                                       (2.5)  

 

Drinkwater and Hastings (1967) have shown that the repair cost limit policy is better 

than the economic age policy. Nonetheless, there is a main drawback to the 

conventional repair cost limit policy: the repair/replace decision is based only on the 

cost of one single repair. Under this condition, a system with frequent failures and, 

consequently, high accumulated repair costs will continue to be repaired rather than 



www.manaraa.com

37 

replaced. As a result, an improved policy making the repair/replace decision based 

on the entire repair history would be a better criterion.  

In order to address this issue, Chang et al. (2010) have developed a generalized 

model for determining the optimal replacement policy based on multiple factors, 

such as the number of minimal repairs before replacement and the cumulative repair 

cost limit. The main characteristic of their model is to consider the entire repair-cost 

history. Nakagawa and Osaki (1974) have also suggested an alternative approach 

which does not focus on repair costs but, instead, on repair time. If the repair process 

is not completed up to the fixed repair time limit, then the unit under repair is 

replaced by a new one. The repair time limit is obtained by minimizing expected 

costs per unit of time over an infinite time horizon. 

 

2.2.2.3 Comprehensive Cost Minimization Models 

There are other approaches that generalize the problem of optimal replacement by 

taking into account the optimal decisions for acquisition, operation, and replacement 

policies. For example, Simms et al. (1984) have analysed a transit bus fleet in which 

the equipment units in the fleet system were assigned to perform different tasks, at 

different levels, subject to changing capacity constraints. Their objective was to 

minimize the total discounted cost over a finite horizon.  

The objective function is represented by (2.6), in which t and a are the indices for 

time periods (year) and age of the buses, respectively, and T is the length of the 

planning horizon, in years. The decision variables are: the number of route 

kilometres travelled by a bus with age a, in year t, mta; the number of buses with age 

a, which operate in year t, xta; and the number of new buses which should be 
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purchased, with an acquisition cost Lt, at the beginning of year t, denoted by pt. In 

each year the price of selling a bus with age a, is represented by Sta , and Cta (mta) is 

the cost of operating a bus with age a, in year t, for the associated kilometres 

travelled by mta. Finally, γ represents the discount factor. In equation (2.6) the first 

term represents the acquisition costs, the second term stands for the revenue received 

from selling the buses, and the third term denotes the cost of operating the buses. 

Simms et al. (1984) computed the optimal acquisition, operation and selling policies 

using dynamic programming.  

1
1, 1 1, 1, , 0 0 0

 Z = ( ) ( )
ta ta t

T T T
t t i

t t ta t a t a ta ta tam x p t t a t a
Min p L x x S x C mγ γ γ+

+ + + +
= = =

− − +∑ ∑ ∑ ∑∑                   (2.6)  

                      

Next we consider the constraints of the model proposed by Simms et al. (1984). The 

nonlinear constraint (2.7) requires that a minimum total route kilometers, per year, 

Mt, is driven by the fleet. The constraint (2.8) expresses the boundary conditions for 

the decision variable mta, in which m– and m+ denote the minimum and maximum 

number of kilometres that a single bus can drive in a given year, respectively. 

Constraint (2.9) represents the requirement that at least a minimum number of buses, 

Nt, in each year, should be in the fleet. In inequality (2.10), Q is the minimum age for 

a bus to be considered for a sell decision and the left hand side is equal to the 

number of buses which are sold at the beginning of the corresponding year. 

Therefore, we can say that inequality (2.10) is a consistency constraint, in the sense 

that it does not permit old buses to be bought. Equation (2.11) means that the buses 

are not eligible for sale until their reach to the minimum age Q. Equation (2.12) 

represents the boundary conditions, in which Ka are the initial numbers of buses for 

the different ages. If budget constraints for capital acquisitions are also considered, 
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then the constraint (2.13) is also required, in which Bt is the capital budget in period 

t. Furthermore, if there is also an operating budget constraint, then we also need to 

impose constraint (2.14) in which Ot is the operating budget, in period t. 
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The model represented by equations (2.6)-(2.14) has a non-linear objective function 

subject to a set of non-linear constraints. By using dynamic programming, Simms et 

al. (1984) solved it. If we compare the two models proposed by Simms et al. (1984) 

and Keles and Hartman (2004), we understand that regardless of the methodology 

for solving two models, the main difference is considering the behaviour of 

utilization as a function of age of the vehicles and assuming it as a decision variable 

by Simms et al. (1984). Another difference is that Simms et al. (1984) considered the 

same type of asset whereas Keles and Harman (2004) considered multiple types of 

asset. However, for the rest of the components of the two models, i.e., the goal of the 

objective function and the constraints they are almost the same. 

On this same topic, Hartman (1999) has considered the replacement plan and 

corresponding utilization levels for a multi-asset case in order to minimize the total 

cost. He generalized equipment replacement analysis as it explicitly considers 

utilization as a decision variable. His model allows assets to be categorized 

according to age and cumulative utilization, while allowing their periodic utilization 

to be determined through analysis. As a result, he has considered simultaneously 

tactical replacement and operational decisions, taking into account the tradeoffs 

between capital expenses (replacement costs) and operating expenses (utilization 

costs). The objective was to minimize the total cost of assets that operate in parallel. 

He solved the problem using linear programming. Furthermore, Hartman (2004) has 

generalized this same problem by incorporating a stochastic demand. He solved the 

problem using dynamic programming. Overall, both Simms and Hartman did not 

introduce any special new replacement criteria and just presented optimization 

methodologies in order to minimize the cost of corresponding fleets. 
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Furthermore, an important issue that we need to discuss in this topic is the relation 

between age and utilization. The utilization intensity (annual mileage) of vehicles 

exploited by transportation companies decreases with time of 

exploitation/cumulative mileage probably in all real life cases. The youngest vehicles 

are usually utilized more intensively than the oldest ones, because their unit 

exploitation costs are lower (e.g. fuel consumption is lower), and the depreciation 

costs can be ignored. The occurrence of such pattern can be found in, for example, 

Kim et al. (2004) and Simms et al. (1984), and it fits well with real world situations, 

as illustrated in Figure 2.3 (based on Simms et al., 1984). 

Simms et al. (1984) have considered explicitly this issue in a bus fleet data. They 

mentioned that if the relation between utilization with age is not considered, one 

would expect that the older buses would be replaced first and younger buses kept. 

However, in practice, this is not the case for two reasons. First, the case in which 

older buses are kept only to meet peak daily demand and these buses accumulate 

only the minimum number of route kilometres during the year. Second, the resale 

value of younger buses is much higher than older buses. Therefore, even if the 

operating cost of older buses is higher, they do not operate enough route kilometres 

and the extra expense is lower than the gain obtained by selling younger buses. So, 

they assumed two levels of utilization for an urban transit bus fleet with different 

ages. They concluded that a high utilization level is considered for buses with less 

than ten years for satisfying the normal demand and a low utilization level for buses 

more than ten years in the case of peak demand. 

Redmer (2009) has also considered the relationship between utilization intensity and 

aging by applying the minimal average cost replacement policy using the following 
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considerations. a) The utilization intensity (annual mileage) of vehicles for each year 

of their operational life has to be taken into account. b) The vehicles’ exploitation 

costs have to be divided into fixed costs (independent of utilization intensity, but 

varying with time of exploitation/cumulative mileage), running costs (depending on 

utilization intensity/mileage and varying with time of exploitation/cumulative 

mileage) and fuel costs (varying with time of exploitation/cumulative mileage). c) 

The total costs of exploitation and ownership have to be given per one km or mile. d) 

The technical durability of vehicles (e.g., maximal mileage) has to be taken into 

account. e) Different forms of financing the fleet investments (buying for cash, 

credit, leasing, and hiring) have to be considered. 

 

 

Figure 2.3: Annual utilization by age. 
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Next, we describe the parallel replacement problem and we suggest a new model for 

addressing the issues raised by Redmer (2009) in the context of parallel replacement 

problem (Section 2.4). 

 

2.2.3 The General Parallel Replacement Problem 

In this section we commonly refer to groups of assets as fleets. However, the model 

is general in the sense that cost functions are specified without operational details. 

Thus, this analysis may be applied to a manufacturing setting if the costs can be 

quantified. 

The parallel replacement models are usually difficult to solve due to their 

combinatorial nature as mentioned by Hartman (2000). Jones et al. (1991) 

considered a parallel replacement problem on the condition of fixed replacement 

costs. Rajagopalan (1998) and Chand et al. (2000) have proposed dynamic 

programming algorithms that simultaneously consider the replacement and capacity 

expansion problems.  

 

2.2.3.1 An Integer Programming Formulation of the Parallel Replacement 

Problem 

Given the complex nature of the problem, the case of multiple alternatives within 

parallel replacement has been rarely considered in the literature. Keles and Hartman 

(2004) have proposed an Integer Programming formulation of the bus fleet 

replacement problem with multiple choices under economies of scale and budgeting 

constraints. The objective function is summarized in equation (2.15). All costs in the 
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model are assumed to be discounted to time zero using an appropriate discount rate. 

The fixed cost associated with asset buying is represented by ft and lit  is the new 

asset acquisition cost per unit in each year. The operating and maintenance cost is 

shown by ciat and the salvage revenue is represented by riat. 

In (2.15) the indices are a, t, and i which stand for the age of the assets (buses), time 

periods, and type of the assets, respectively. I, represents the total number of 

challengers (i.e., available alternatives for assets) in each period. The maximum age 

of any asset associated with its type is shown by Ai and the length of time horizon is 

assumed to be T (typically T is assumed to be less than 15 years). The total number 

of assets which are currently used in the system is represented by Xiat (a > 0). The 

decision variables are the number of the assets bought at the beginning of each year, 

Xi0t, the number of assets which are salvaged at the end of each year, Siat, and a 

binary variable confirming an acquisition in year t, Zt.  
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The objective function represents the costs associated with each challenger’s 

discounted cash flows which are purchasing, operating and maintenance costs 

subtracting the revenue from salvage values. 

We now describe the constraints in the Keles and Hartman (2004)’s model. 

Constraint (2.16) requires that enough assets (or capacity) are available to satisfy 

demand for buses at time t, dt. Equation (2.17) presents the capital budging 

constraint to limit the payment for new asset acquisitions with predetermined capital 
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budget, bt, in each year. Constraint (2.18) describes that the initial number of assets, 

hia (a > 0), should be either used, Xia0, or salvaged, Sia0. Equation (2.19) shows that 

the number of used assets in one year should be either used or salvaged in the next 

year. Constraint (2.20) requires that all assets should be sold in the last year of the 

planning horizon (T). Equation (2.21) presents that any asset that has reached its 

maximal age is not used anymore. Constraint (2.22) prohibits salvaging any new 

asset immediately. Indeed, for salvaging of any new purchased asset at least one year 

should be passed. Finally, constraint (2.23) requires non-negative, integer solutions. 

1

1 0

       {0,1,..., 1}
iAI

iat t
i a

X d t T
−

= =

≥ ∀ ∈ −∑∑                                                                    (2.16) 

 

1

0
1 0

        {0,1,..., 1}
kAI

it i t t t t
i a

l X f Z b t T
−

= =

+ ≤ ∀ ∈ −∑∑                                                     (2.17)                         

  

  0 0         {1,2,..., },ia ia ia kX S h a A i I+ = ∀ ∈ ∀ ∈                                                    (2.18)

  

 ( 1)( 1)     , , {1,2,..., }i a t iat iat iX X S i I a A t T− − = + ∀ ∈ ∀ ∈ ∀ ∈                                       (2.19)                         

 

0      {0,1,2,..., 1}iaT iX a A= ∀ ∈ −                                                                         (2.20) 

 

0     , {0,1, 2,..., }
iiA tX i I t T= ∀ ∈ ∀ ∈                                                                      (2.21) 
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0 0     , {0,1,2,..., }i tS i I t T= ∀ ∈ ∀ ∈                                                                        (2.22) 

  

, {0,1,2,...},  Z {0,1}iat iat jX S ∈ ∈                                                                             (2.23) 

 

Keles and Hartman (2004), by solving the model represented in equations (2.15)-

(2.23), together with an extensive sensitivity analysis, have considered the impact of 

various parameters on the optimal policies for choosing the appropriate type and 

timing for bus replacement. 

The aforementioned papers on the parallel replacement problem were considered in a 

deterministic framework. Replacement models in the case of existence of uncertainty 

were focused mainly on single or serial replacement problems. For example, Ye 

(1990) presented a single replacement model in which operating costs and the rate of 

deterioration of equipment were stochastic and the optimal time for replacing was 

determined in a continuous-time setting. Dobbs (2004) developed a serial 

replacement model in which operating costs were modelled as a geometric Brownian 

motion and the optimal investment time was obtained. Rajagopalan et al. (1998) 

developed a dynamic programming algorithm for a problem where sequences of 

technological breakthroughs were anticipated but their magnitude and timing were 

uncertain. A firm, operating in such an environment, should decide how much 

capacity of the current technology to acquire to meet future demand growth. 
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Keles and Hartman (2004)’s model has been very successful in other types of 

applications. For example, Feng and Figliozzi (2013) have considered a fleet 

replacement framework for comparing the competitiveness of electrical with 

conventional diesel trucks. Their model has been adapted from Keles and Hartman 

(2004). They obtained scenarios with different fleet utilization and fuel efficiency. 

By using sensitivity analysis of ten additional factors, they have shown that EVs are 

more cost effective when conventional diesel vehicles’ fuel efficiency is low and 

daily utilization is above some threshold. Breakeven values of some key economic 

and technological factors that separate the competitiveness between EVs and 

conventional diesel vehicles were calculated in all scenarios.  

Typically, in the comparison of the performance of electrical and conventional 

vehicles, one takes into account the high capital costs associated with electrical 

engine vehicles. The replacement decision depends on the result of a complete 

economic and logistics evaluation of the competitiveness of the new vehicle type. In 

addition, as vehicles age, their per-mile operating and maintenance costs increase 

and their salvage values decrease. So, when the O&M costs reach a relatively high 

level, it may become cost effective to replace fossil fuel vehicles since the savings 

from O&M costs may compensate the high capital cost of purchasing electrical 

engine vehicles. Moreover, if fleet managers are enthusiastic in replacing 

conventional vehicles with new electric vehicles, it is important to understand how 

the O&M costs and salvage values change over time. Conventional diesel and 

electric commercial vehicles have significantly different capital and O&M costs. 
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2.2.3.2 A General Parallel Heterogeneous Asset Leasing Replacement Model 

In this subsection we introduce a general asset (fleet) replacement model for 

obtaining optimal replacement decisions regarding K types of assets under leasing 

framework. This model is adapted from Keles and Hartman (2004). Specifically, a 

heterogeneous model is developed in which the assets are bounded by common 

budget constraints, demand constraints, and a fixed cost that is charged in any period 

in which there exist a replacement. It is assumed that in any period, assets from any 

of K types can be leased in order to replace retired assets for meeting corresponding 

demand in that period. First, we introduce the general asset replacement model and 

then we consider the customized model for fleet replacement. 

The notation and formulation to be presented is more easily described by the 

network in Figure 2.4. For the sake of simplicity this figure represents the case of 

two asset types that are available to meet demand (i=2). The age of the asset, a, is 

defined on the y-axis (maximum A) and the end of the time period, t, is defined on 

the x-axis (horizon T). Due to the fact that we are considering a commercial setting, 

the leasing period is assumed to be four years. So, based on this assumption in 

Figure 2.3, the model is represented with A = 3 and T = 6. Indeed, at the end of time 

horizon T = 6 all the assets are retired.  

 Each node is defined according to the pair (a,t) and flow between these nodes, Xiat 

represents an asset of age a in use from the end of time period t to the end of period t 

+1, in which the asset is of age a+1. Assets are either provided from the initial fleet, 

represented as flow from supply nodes nia, or must be leased, represented as Xi0t flow 

in each period t. 
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An asset when reaches age A must be retired. All assets are retired at the end of the 

horizon. For meeting the associated demand in each period, the retired assets should 

be replaced by leasing new assets. In Figure 2.4, the two types of assets are 

represented by different arcs (dashed or solid).  

Next we adapt the introduced model for fleet replacement. We consider two types of 

technologies: the fossil fuel technology (Defender) and the new engine technology 

(Challenger). Moreover, we take into account the leasing option for financing the 

commercial fleet investments which is the best option in the commercial setting 

(Redmer, 2009). This is a deterministic model. Future costs such as lease prices, fuel 

prices, fuel and electricity consumption rates and many other economic and technical 

factors are assumed to be known functions of time and vehicle type. 

The indices in the model are the types of vehicles, i є {1, 2}, the maximum age of 

vehicles in years, a є A = {1, 2,..., A}, and the time periods (year), t є T = {0, 1,..., 

T}. The decision variables include the number of type i, age a vehicles which are 

currently leased in year t, Xiat, and the number of type i vehicles which are leased at 

the beginning of year t, Pit.  
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Figure 2.4: Challengers are denoted by different arcs and different source (initial 

fleet) nodes. Nodes are labelled (a, t) with a the age of the asset and t the time 

period. Flow Xiat represents asset leased (a = 0) and assets in use (a > 0). 

The parameters are a) the expected utilization (miles travelled per year) of a type i, 

age a vehicle in year t (miles/year), uiat; b) the expected demand (miles need to be 

travelled by all vehicles) in year t (miles), dt ; c) the available budget (money 

available for leasing new vehicles) in the beginning of year t, bt ; d) the initial 

number of a type i, age a vehicles at the beginning of first year, hia ; e) the lease cost 

of a type i vehicle, li ; f) the expected per mile operating (running) cost of a type i , 

age a vehicle in year t, oiat ; and g) per mile emissions cost of a type i , age a vehicle, 

eia. The objective function which we want to minimize (2.24) is the sum of leasing 

costs for the period (T-3) and the operating (running) cost for the entire horizon to 
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the end of year T. Moreover, equation (2.25) shows that the leasing costs cannot 

exceed the yearly budget and equation (2.26) requires that the total miles travelled by 

all used vehicles meet the yearly demand. Equation (2.27) describes the total number 

of the vehicles with different ages and types in the first year should be equal to the 

initial condition of the system. In addition, equation (2.28) shows that in the last 4 

years of the planning horizon there is no leasing of new cars. In equation (2.29) the 

number of new leased cars at the beginning of each year is determined. Equation 

(2.30) represents the flow equation in which the number of the cars at each year 

equals to the number of new leased cars plus the number of cars belonged to the 

previous year. Finally, expression (2.31) is the constraint for non-negative numbers 

of decision variables. 

 

3

0 0 0 0 0
 ( ) [ ]

I T I A T

i it iat ia iat iat
i t i a t

Min l P o e u X
−

= = = = =

+ +∑∑ ∑∑∑                                                     (2.24) 

 

.          {0,1,2,..., 3}
I
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l P b t T
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≤ ∀ ∈ −∑                                                                  (2.25) 

 

    
0

{0,1,2,.., 3}
A I

iat iat t
a i

X u d t T
= =

≥ ∀ ∈ −∑∑                                                                 (2.26) 

 

0      ,ia iaX h i I a A= ∀ ∈ ∀ ∈                                                                                   (2.27) 

 

0       , { 3,..., }itP i I t T T= ∀ ∈ ∀ ∈ −                                                                        (2.28) 
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0      , {0,1,2,..., 3}it i tP X i I t T= ∀ ∈ ∀ ∈ −                                                                 (2.29) 

 

( 1)( 1)     , ,iat it i a tX P X i I a A t T− −= + ∀ ∈ ∀ ∈ ∀ ∈                                                       (2.30) 

 

,iat itX P Z +∈                                                                                                           (2.31) 

 

Having analyzed extensively the different models in the literature and identified 

some of their limitations, next, in Section 2.4, we summarize the main insights from 

our review of these different approaches.   

 

2.2.4 Insights from the Literature on Fleet (asset) Replacement Models 

The aforementioned replacement policies and methods represent only a small part of 

all efforts that have been done to solve the equipment replacement problem in 

general (Nakagawa, 1984; Ritchken and Wilson, 1990), and the vehicle replacement 

problem in particular (Eilon et al., 1966). 

Despite the fact that the vehicle replacement policy has a prominent role in 

transportation companies and belongs to an important class of the fleet strategic 

management problems that have been extensively considered in the literature during 

last 50 years (Dejax and Crainic, 1987), there are many obstacles for applying the 

existing methods. Such obstacles exist from the following features of the existing 

replacement methods (Redmer, 2009):  
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• Most of the methods are assumed to be applied in a stable environment which 

is not the case for most of the vehicles in under operational conditions. For 

example, the way those vehicles are utilized and the loads carried, the 

climate, and other factors from road conditions which can have impact on 

fuel economy of the vehicles. 

• Focused on a given group (type) of vehicles instead of a single vehicle. 

• Taking into account a constant utilization rate of the equipment during its 

Operational life. 

In Practice, the existing models have at least one of the mentioned drawbacks. For 

instance, Eilon et al. (1966) consider particular vehicles but assume a fixed 

utilization pattern whereas Simms et al. (1984) relax the assumption of the constant 

utilization but constrain an age to the replacement problem by placing a lower bound 

of 15 years. Suzuki and Pautsch (2005) also constrain an age to the replacement 

model by putting an upper bound of 5 years and they conclude that vehicles of age 6 

or beyond may not be suitable for business operations, that contradicts the 

assumption of Simms et al. (1984). Moreover, the significant part of the vehicle 

replacement models assumes budget constraints (Simms et al., 1984), which is 

important when replacement policy is defined for fleet of vehicles but not for 

particular vehicles. However, such constraints generally result in replacement of the 

limited group of the oldest vehicles (Redmer, 2009). Because of the listed drawbacks 

of the existing replacement methods, a direct application of them to the vehicles 

deployed by freight transportation companies is difficult, if not impossible. 
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2.2.5 Practical Challenges for the Fleet Replacement Problem 

Typically fleet management for field services requires finding the right vehicle, of 

the right capacity, for the right business, and fitting the required features into the 

serviced work type. In practice, these decisions are twofold:  

• First, we need to identify the vehicles portfolio needs in terms of volume 

capacity, driving features (speed and driving wheels, for instance). 

• Second, we need to calculate a replacement plan, from one to five years, to 

ensure that the provision of the right brand, model, and vehicle asset supplier 

for each identified fleet item. 

The second step can be modeled as a multi-objective combinatorial optimization 

problem. However there is not a single solution, as a matter of fact, the solution is in 

the form of a ranking of the technology and brands available based on the most 

economical and ecological choice. The accuracy of such a ranking is generally 

limited to a number of years; due to high variation in energy prices market, fleet 

managers generally are advised to plan one year in advance. Therefore, there is an 

important practical challenge: to increase the planning horizon to the full four years, 

taking into account all the uncertainties. 

The combinatorial aspect of the operation is complicated by the fact that the 

matching of vehicle types and running technology depends both on the driver’s 

behavior and on the variation of usage over days, months or years. For instance, a 

simple analysis suggests that the petrol engine tends to be cost effective when 

dealing with short annual mileage usage, and a mixed diesel and hybrid technology 

are suitable for normal distances while affording a risk exposure reduction. 
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Moreover, the electric engine tends to be the optimal choice, both from risk and cost 

minimization perspectives, when the annual mileage usage is high. 

The following are some of the challenges faced by fleet provisioning: 

• The fleet provisioning needs to consider the mileage driven by the vehicles. 

Thus, in the process of constructing a replacement tactical plan, we need to 

implement a method for forecasting annual mileage with a granularity at the 

vehicle type or service operations type level.  

• The length of equipment life is not fixed. Even though the rental duration can 

be used as working hypothesis, in practice the replacement decision may 

happen before the planned end of life, depending on the maintenance cost, 

fuel prices variation forecast, electric energy recharge constraints, geography 

and volume of the field service demand. 

• Overall, we need to find a balance between risk exposure and O&M cost 

minimization, taking into consideration the utilization of vehicles, and the 

frequency of long, medium or short distance driven by each vehicle. A fine 

granularity analysis of mileage, fuel consumption and geographical 

information monitoring data will help in adjusting the approach for realizing 

sustainable field operations. 

• There is a need to consider fuel price uncertainty, the variation of fuel 

consumption in each technology, leasing costs and the accessibility of 

vehicles based on the real data. 

• If we consider a larger number of aspects in the model the analysis will be 

more accurate. If you want to introduce manufacturing costs into the model 
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you will require quote information from the enterprise processes; if you 

consider customer experience (service commitment delivered, number of 

visits before completing the task, asset missing, for instance) you will need to 

analyze the robustness of the replacement plan when environment or service 

engineering variables change. Furthermore, an analysis of the impact of the 

average speed of the vehicles on the fleet management decisions seems to be 

one other direction of research; however this variable suffers generally from 

data quality issues, due to lack of links between tactical planning and the 

travel feedback from field workers: the use of an electronic box embedded in 

vehicles is an interesting alternative to improve the flow of information from 

operations to strategic planning, one of which should be considered if the 

improvements in fleet management outweigh the costs of installing and 

maintaining the system. 

Additionally, the vehicle utilization governance within a firm also has an important 

impact on fleet management. We can consider this issue if we analyze the fleet 

portfolio life cycle at an organizational level. In this framework, a vehicle is seen as 

an item that can be swapped across business units: in this case, the transfer of an 

unused vehicle from a line of business to another one would be a better alternative to 

rent a new vehicle. If we consider this new framework several questions arise: which 

option leads to the best cost risk and customer experience trade-off? How can the 

cost of vehicle reuse option be recorded? 

This governance structure at a global level, when transforming the fleet portfolio and 

the impact on environment, requires support at a tactical level, by: 1) planning the 

number of vehicles per technology (source of energy), capacity and various 



www.manaraa.com

57 

mileages, in the short, medium and long-term; 2) analysing risk exposure (taking 

into account the forecasted demand and supply life cycle); 3) considering the impact 

of such decisions on the customer experience. 

In order to have a better grasp of the different kind of uncertainties in the fleet 

management, we provide a brief literature on risk management issues namely 

differtent kind of risks and risk measures in the next section.  

 

2.3 Literature on Risk Management in Operations and Supply Chains 

Risk and uncertainty has always been an important issue in operations and supply 

chain management. In the field of supply chain management, several publications 

have addressed the question of how to define supply chain risk. Two different 

approaches can be distinguished (1) risk as both danger and opportunity and (2) risk 

as purely danger. The first approach is in the line with search such as finance. Here 

the fluctuations around the expected value (mean) of a performance measure are 

used as proxy for risk, where is equated with variance and covers both a “downside” 

and an “upside” potential. That is, to say that risk is essentially a manifestation of 

uncontrollability rather than merely a downside possibility (Arrow, 1970). 

However, the second approach which defines risk as purely danger coincides with a 

majority of business researches. For example, March and Shapira (1987) empirically 

examine how managers perceive risk and react to it. They find that the majority tend 

to overrate the “downside” potential of risk. Several scholars in the supply chain 

management field have adopted this view. Harland et al. (2003); for instance, discuss 
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several definitions and conclude that supply chain risk is associated with the ”chance 

of danger, damage, loss, injury or any other undesired consequences.” 

Juttner et al. (2003) have argued that supply chain risk management consists of four 

key elements (1) assessing the risk sources for the supply chains, (2) defining the 

supply chain adverse consequences, (3) identifying the risk drivers, and (4) 

mitigating risks for the supply chain.  

There exist various types of supply chain risks. Chopra and Sodhi (2004) categorized 

supply chain risks into disruptions, delays, systems, forecast, intellectual property, 

procurement, receivables, inventory, and capacity. For example, disruption risks 

include natural disaster, labor dispute, supplier bankruptcy, war and terrorism, and 

dependency on a single source of supply as well as the capacity and responsiveness 

of alternative suppliers. 

Kleindorfer and Sadd (2005) have provided a conceptual framework that explains 

the joint activities of risk assessment and risk mitigation that are fundamental to risk 

management in supply chains. Their assumption is that a company is interested in 

the tradeoff between the cost of risk mitigation investments, including the cost of 

management systems, and the expected costs of risks.  

In the next section we focus on the risk assessment which means the quantification 

of the risk by introducing different kind of risk measures which are used by risk 

managers. 
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2.3.1 Risk Measuring  

Quaranta et al. (2008) mention that the problem related to variance as a risk measure 

is that it takes into account the upside and downside of distributions equally. As a 

result, financial specialists focused on quantile based measures, like value at risk 

(VaR). The definition of VaR (e.g., Anderson, 2014) is the maximum potential loss 

that a financial sector can tolerate with a certain likelihood during a finite period.  

However, VaR, if considered in the framework of coherent risk measures, lacks 

subadditivity and, consequently, convexity (Artzner et al., 1997) for general 

distributions (although it may be subadditive for special cases, e.g., for normal 

distributions). To solve these problems, recent literature has focused on coherent risk 

measures such as CVaR, e.g., Rockafellar and Uryasev (2000, 2002). Moreover, the 

cases of asymmetric asset distributions (Goh et al., 2012) and a robust optimization 

approach for CVaR (Chen et al., 2010) have also been considered in the literature. 

Next, we consider each of the above definitions in more detail. 

 

2.3.1.1 Coherent risk measure 

After 1997, with the emergence of Thinking Coherently (Artzner et al., 1997), 

certain conditions in which a statistic should have in order to be supposed a coherent 

risk measure was defined. Artzner et al. (1997) defined four conditions that have to 

be satisfied by a coherent risk measure. If X and Y show portfolio returns, ( )Xρ  and 

( )Yρ are their risk measures, respectively, and h is a constant then we should have: 

Translation Invariance: ( ) ( )X h X hρ ρ+ = +                                                       (2.32) 
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Positive Homogeneity: ( ) ( )hX h Xρ ρ=                                                               (2.33) 

Subaddivity: ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ +                                                                  (2.34) 

The above conditions which supposed to be satisfied for a coherent risk measure in 

summary denote that if a portfolio is riskier than another portfolio, it will have a 

higher risk value as long as the risk measure is coherent. In contrast, if a risk 

measure does not satisfy all three mentioned conditions might give a wrong 

evaluation of corresponding risks (Acerbi and Tasche, 2002). 

 

2.3.1.2 Value at risk 

In recent years taking into account the impacts of unexpected losses which influence 

on financial markets has considerably increased. After the late ‘80s, the Basel 

Committee (Basel Council, 1996) has focused on finding a better way for measuring 

the risk and introduced some mathematical and statistical theories for its 

quantification. This is the foundation that tells us the selection of VaR as risk 

measure. In Section 2.3.1, we mentioned a brief description of VaR. But, if we want 

to put it in more detail and define it more accurately, we should say that VaR 

concentrate on the downside risk of a portfolio and can be expressed as the 

maximum expected loss at a certain confidence level say 99% over a finite time 

horizon like twenty days. For instance, if VaR is $-150 for a portfolio with 

confidence level of 99% and a time horizon of 20 days, we can say that with 99% 

likelihood we will not lose more than $150 over the next twenty days. 

The mathematical definition of VaR is: 
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( ) ( ) 1
VaR

F p r dr P r VaR
β

ββ β
−∞

⎡ ⎤= = ≤ = −⎣ ⎦∫                                                        (2.35) 

In above formula ( )p r  is the probability density function and expected rate of 

return, r, is a random variable defined by its cumulative distribution function F. 

Moreover, β  is the confidence level. 

VaR satisfies the conditions (2.32) to (2.33), (Artzner et al., 1999), but does not 

fulfill the subadditive condition and this prohibits it to be a convex risk measure. 

Moreover, this risk measure is very hard to optimize even when it is calculated using 

scenarios; in this case VaR is non-convex, non-smooth and has multiple local 

extrema (Uryasev, 2000). 

In order to solve this problem Rockafellar and Uryasev (2000, 2002) introduced 

another risk measure known as conditional value at risk (CVaR). 

 

2.3.1.3 Conditional value at risk 

Another powerful risk measure, with more sound characteristics, is CVaR, which is 

also named Mean Excess Loss, Mean shortfall, or Tail VaR (Uryasev, 2000). 

Briefly, CVaR is defined as the conditional expectation of the losses beyond VaR 

(e.g., Anderson, 2014).  CVaR was created to be an extension of VaR. The VaR 

model does allow managers to limit the probability of incurring losses caused by 

certain types of risk - but not all risks. In an intuitive way, the problem with relying 

only on the VaR model is that the scope of risk assessed is limited, since the tail end 

of the distribution of loss is not typically assessed. Therefore, if losses are happened, 

the amount of the losses will be substantial in value. However, CVaR gives us 
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information about the magnitude of the losses beyond VaR. Mathematically 

speaking, CVaR is derived by taking a weighted average between the value at risk 

and losses exceeding the value at risk or: 

1 ( )
1

VaR

CVaR rp r dr
β

β β −∞

=
− ∫                                                                                    (2.36) 

Or equivalently 

[ ]CVaR E x x VaRβ β= ≥                                                                                        (2.37) 

 In order to have a better grasp of the concepts of VaR and CVaR as risk measures, 

we have depicted them in Figure 2.4. This figure shows that VaR is a quantile which 

shows the greatest loss with confidence level 1-β and CVaR is the average of the 

losses that are exceeding the VaR and less than maximum portfolio loss with the 

same confidence level. Indeed, in contrast to VaR, CVaR provides extra information 

on the losses in the tail of the loss distribution beyond VaR (Figure 2.4).  

CVaR is a consistent measure of risk because it is subadditive and convex (Artzner 

et al., 1999). Moreover, it has been proven that it can be optimized using linear 

programming, which can handle portfolios with a very large number of scenarios 

(Rockafellar and Uryasev, 2000). In addition, minimization of CVaR leads to near 

optimal solutions for VaR, and when the return-loss distribution is normal, these two 

risk measures produce the same optimal portfolio (Rockafellar and Uryasev, 2000). 

The linear program model suggested by Rockafellar and Uryasev for simultaneous 

minimization of CVaR and calculation of VaR is as follows:  
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Figure 2.5 VaR, CVaR, and Maximum loss, Rockafellar and Uryasev, 2000 
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In the above model, βφ  and βα  denote the CVaR and VaR for the confidence level 

of β, respectively. In addition, q represents the number of scenarios, and qγ  shows 

the vector of stochastic variables in scenario q sampled from the distribution of the 

stochastic processes in the model, v= ((1-β) Q)-1, where x is the vector of decision 

variables, zq are positive dummy variables, and f denotes the loss function. Solving 
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the above LP model simultaneously yields the optimal value of *
βφ , the decision 

variable, which is x*, and *
βα . 

 

2.4 Summary 

In this Chapter we have provided a literature review for the three interconnected 

parts of this thesis which are sustainable operations, asset (fleet) replacement 

problem, and risk management in operations. 

As we have seen, the major part of the literature in sustainable operations 

concentrates on green and sustainable supply chain, closed-loop supply chains, 

reverse logistics, and remanufacturing (Debo et al., 2005; Flapper et al., 2005; 

Savaskan et al., 2004). This thesis can be indirectly related to green supply chains in 

the sense that it focuses on justifying adoption of a green product (i.e., EVs) and the 

impact of CO2 emissions on the supply chain and marketing strategy of automobile 

manufacturers (Atasu et al., 2008).  

Then, we have considered a comprehensive literature review for different approaches 

regarding the asset (fleet) replacement problem which is the core idea of this thesis. 

Although the machine or vehicle replacement literature is rich in models dealing 

with budget constraints (Chand et al., 2000; Karabakal et al., 1994), stochastic 

demands (Hartman, 2001), and heterogeneous types of vehicles (Hartman, 2004), 

these models have not been considered risk management perspective.  

Finally, we have provided a general introduction and survey of risk management and 

risk measuring and its applications especially in operations. We have also considered 
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a general discussion of risk management issues in operations and supply chains. 

Moreover, we have defined the concepts of risk measuring, coherent risk measure, 

VaR, and CVaR.  

In summary, from the comprehensive literature review in this Chapter, it is evident 

that there is a gap that this article aims to address: to explain sustainable fleet 

replacement from an uncertainty perspective using risk management methodologies. 

Next, Chapter 3 addresses the issue of fleet replacement problem taking into account 

the some of the challenges that we have mentioned. Specifically, we consider the 

uncertainties due to fuel and CO2 pries, fuel consumption, and mileage driven by 

vehicles in a two-stage decision making model and CVaR. 
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CHAPTER 3 

 

 

A TWO-STAGE STOCHASTIC PROGRAMMING 

MODEL FOR SUSTAINABLE FLEET 

REPLACEMENT 

 

Au chapitre 3, nous effectuons un examen de la littérature consacrée à la valeur à 

risque conditionnelle (CVaR). C’est une mesure du risque cohérente que nous 

utilisons pour la gestion du risque dans le contexte du remplacement du parc. Puis 

nous proposons un modèle de programmation stochastique à deux étapes pour une 

politique de remplacement du parc. Il s’agit d’une politique statique où les décisions 

sont prises à la première étape et nous étudions un type de véhicule de différentes 

marques. Nous donnons également certains résultats analytiques pour une 

comparaison de la CVaR des véhicules à carburant fossile et des véhicules 
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électriques, en prenant en compte la volatilité du prix du CO2 et du carburant, la 

consommation de carburant et la distance parcourue. Enfin, nous validons ces 

résultats analytiques par une étude de cas réel et nous formulons une conclusion à ce 

chapitre. 

In this Chapter, we provide a two-stage stochastic programming model for the 

replacement policy. By two stages we mean we adopt a static policy in which the 

optimal decisions for leasing a vehicle, VaR, and CVaR are made at first year of 

planning horizon. So, it is different from conventional two stage stochastic 

programming and we do not make decisions in two stages. We also present some 

analytical results for comparing the CVaR of different technologies of fossil fuel 

vehicles and EVs taking into account the uncertainties, which are: CO2 and fuel price 

volatility, fuel consumption, and mileage driven by a vehicle. Finally, we validate 

the analytical results using a real case study and we conclude the Chapter. 

The Chapter is organized as follows: Section 3.1 introduces the modeling of fleet 

replacement and develops a customized two-stage stochastic mixed-integer linear 

programming model (MILP) for minimizing risk and expected cost. Section 3.2 

presents the analytical results on the comparison of the CVaR of different types of 

vehicles. Section 3.3 provides a case study for validating the analytical results, and 

Section 3.4 describes the results of a real case study. Lastly, Section 3.5 presents the 

summary of the Chapter. 

 

 

 



www.manaraa.com

68 

3.1 A Two-Stage Model for Fleet Replacement Policy 

This section presents a stochastic model for vehicle leasing in a given planning 

horizon. The aim is to obtain the optimal policy that minimizes the cost and the risk 

simultaneously. Because equation (3.1) uses a two-stage model, the average fuel 

prices (fu) are calculated. In equation (3.1), fut denotes the forecasted fuel prices 

during the planning horizon, and T is the length of the horizon in years. Moreover, 

equation (3.2), to obtain the average electricity charge costs of batteries of EVs, ebu, 

(for different brands with respect to a benchmark brand for 100 miles) uses the 

average electricity prices from equation (3.1). In equation (3.2), pb is the ratio of 

battery capacity to the benchmark brand. The notations are summarized in Table 

3.1(a). 

 

1
/

T

t
u ut Tf f

=

= ∑                                       For all u                                                               (3.1) 

 

bu bu pe f=                                              For all u and b                                                  (3.2) 

 

Next, equation (3.3) describes how to compute the running cost for each brand of 

fossil fuel technology, per 100 km, under different scenarios. In addition, the running 

cost for electric vehicles (EVs), per 100 km, is calculated using equation (3.4). In 

equation (3.3), obv denotes fuel consumption for fossil fuel vehicles per 100 km. The 

cost of CO2 emissions for different technologies, in (3.3) and (3.4), is taken into 
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account by including parameter s
pc , which shows carbon prices in different states of 

the world. Other parameters in (3.3) and (3.4) are described in Table 3.1(b). 

 

Table 3.1(a): The indices and decision variables, for technologies, brands, and 
different scenarios for carbon and fuel prices, mileage driven, and fuel consumption 
 

i=1, 2 index for fossil fuel and electrical technologies, respectively            

b=1, 2, B index for brands for b1, b2, and benchmark brand (bB), respectively 

t=1, 2, .., T index for number of periods in the year  

s=1, 2, S index for the state of carbon prices for low, medium, and high, respectively  

u=1, 2,.., U index for the forecasted fuel price scenarios from of 2012 to 2016  

m=1, 2,.., M index for scenarios from the distribution of monthly mileage driven by a 
car 

v=1,….,V index for scenarios from the distribution of fuel consumption by a car  

xib: The car with technology i and brand b that has been leased 

zibusmv: Auxiliary stochastic variables for the loss function 

ib
βα : Value at risk at confidence level β for a car with technology i and brand b 

ib
βφ : Conditional value at risk at confidence level β for a car with technology i and 

brand b 
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Table 3.1(b): Parameters of the model 

 

W: Conversion coefficient of mileage to km 

ω: Parameter for trade-off of risk and cost in the objective function 

β: Confidence level for calculating CVaR and VaR 

Bb: Annual lease cost for batteries of EVs with brand b 

pb: Ratio of the capacity of the battery of EVs with brand b to the benchmark brand 
(22 kw) 

s
pc  : The expected CO2 prices for each state s 

ce: The CO2 emissions (gr) per km for electrical technology 

cg: The CO2 emissions (gr) per liter for fossil fuel technology 

lib: The monthly lease cost for each technology i with brand b. 

Dm: The monthly mileage driven by a car for each scenario m 

obv: Fuel consumption per 100 km for brand b and each scenario v 

fut: Forecasted fuel prices for each scenario u in year t 

fu: Average fuel prices for each scenario u during the planning horizon 

ebu: Average charge cost of EV batteries for 100 miles with brand b for each scenario 
u 

ribusv: The running cost per 100 km for technology i with brand b for each scenario u, 
each state of carbon price s, and each scenario for fuel consumption v 

yibusmv: The total running cost per technology i with brand b for scenario u, each state 
of carbon price s, each scenario for monthly mileage driven by cars m, and each 
scenario for fuel consumption v 

μib: The total fixed cost per technology i with brand b  

 

610( / )s g
puibusv bvr o f c c= +            For all b, u, s, v, and i=1                                  (3.3) 

 

6100 10/ ( / ) s
bu p

e
ibusv Wr e c c= +             For all b, u, s, v, and i=2                                       (3.4)    



www.manaraa.com

71 

Consequently, equation (3.5), based on equations (3.3) and (3.4), describe how to 

compute the total running cost over the planning horizon. In equation (3.5), Dm 

represents the monthly mileage driven by a vehicle. 

 

10048( / ) mibusmv ibusvy WDr=      For all i, b, u, s, v, and m                          (3.5) 

 

Lastly, equations (3.6) and (3.7) are used to calculate the total investment (fixed) 

cost for fossil fuel technologies (3.6) and for EVs (3.7). The monthly leasing cost, 

which is shown by lib, is used to obtain total fixed costs in the planning horizon. 

Moreover, for EVs, there is an extra investment cost, which is the annual lease cost 

for batteries, Bb.   

 

48  ib iblμ =                                      For all b and i=1                                           (3.6) 

 

48 4  ib ib bl Bμ = +                         For all b and i=2                                          (3.7)
 

 

The objective is to minimize the weighted average of CVaR and the total expected 

cost. The decision variable is xib, which denotes a vehicle with technology i and 

brand b. By combining the formulas and parameters presented in the previous 
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sections, the stochastic mixed integer programming problem is represented by 

equations (3.8)-(3.13). 

 

{ }0,1 , ,
 (cost) (1- )

ib
ibx z R R

EMin
β

β

α
ω ω φ

∈ ∈ ∈
= +                                                                        (3.8) 

  

2

1 1 1 1 1 1

2

1 1
((cost) ) /

B U S M V

ibusmv ib
i b u s m v

B

ib ib
i b

E y x USMVxμ
= = = = = == =

= + ∑∑∑∑∑∑∑∑                            (3.9) 

 

1 1 1 1
1/ ( (1 ))ib ib

U S M V

ibusmv
u s m v

USMV zβ βφ βα
= = = =

= + − ∑∑∑∑      For all i and b                   (3.10) 

 

( ) ibiibusmv ib busmv ibz y x βμ α≥ + −                For all i, b, u, s, m, and v                          (3.11) 

 

2

1 1
1 

B

ib
i b

x
= =

=∑∑                                                                                                                  (3.12) 

 

}{0,1ibx ∈                                                                                                                         (3.13) 

 

Because the objective of this stochastic program is to minimize the cost and risk 

simultaneously, equation (3.8) is used to minimize the weighted average of the total 
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expected cost, E (cost), and CVaR. That is, by changing the value of parameter ω to 

different combinations of the total expected cost, the risks over the planning horizon 

are minimized, depending on whether the focus is more on cost or on risk. Equation 

(3.9) is used to calculate the expected total cost, which includes the fixed cost and 

running cost. The running cost is calculated based on the realization of all of the 

stochastic processes for each brand and technology. Moreover, equations (3.10)-

(3.11) are used to compute the value of CVaR at confidence level β (Rockafellar and 

Uryasev, 2000). In inequality (3.11), the first term on the right-hand side denotes the 

loss function (Rockafellar and Uryasev, 2000), and it is related to the total expected 

cost for different scenarios. Lastly, equations (3.12)-(3.13) are the constraints on the 

decision variable. Solving (3.8)-(3.13), depending on the value of ω, yields the 

optimal vector x*, corresponding VaR*, optimal CVaR*, and total expected cost. 

 

3.2 Analytical Results on the Comparison of the CVaR of Different 

Technologies 

This section presents the analytical results comparing the CVaR of different 

technologies. Let yibus denote the stochastic total running cost for technology i with 

brand b, taking into account u scenarios for fuel prices and s states for carbon prices.  

 

Proposition 3.1: The βφ (y2bus) for EVs is less than the βφ (y1bus) for fossil fuel vehicles if 

and only if this condition holds: 6 4( ) ( ) / ( ) ( /10 / ( 10 ))  s g e
u bu b p bf e Wo c c c oβ βφ φ− ≥ − . 

Proof: As βφ (.) is a coherent risk measure (Artzner et al., 1999):  
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( ) ( )   hX h Xβ βφ φ=                                                                                                         (3.14) 

( ) ( )X h X hβ βφ φ+ = −                                                                                                    (3.15) 

( ) ( ) ( )X Y X Yβ β βφ φ φ+ ≤ +                                                                                         (3.16) 

In equations (3.14)-(3.16), h is an arbitrary constant and X and Y denote stochastic 

variables. Moreover, these equations are referred to as the Positive Homogeneity, 

Translation Invariance, and Subadditivity properties of coherent risk measures, 

respectively (Artzner et al., 1997). The comparison of the βφ (.) for EVs with fossil 

fuel vehicles is based on the stochastic total running cost. Based on equations (3.3)-

(3.5) and (3.14)-(3.15), equation (3.17) can be derived.  

6
1( ) 0.48 ( ) 0.48 /10gs

u pbus b by WDo f o WDc cβ βφ φ= −        For all b, u, s                         (3.17) 

Specifically, equation (3.17) is for the case considering fossil fuel prices as 

stochastic processes. In equation (3.17), D denotes the expected monthly mileage 

driven by a car and is a constant parameter (Table 3.4). Moreover, for the case of 

EVs in equation (3.18) using properties (3.14)-(3.15), the value of βφ (.) is 

calculated. 

6
2 0. )( ) 48 ( 48 /10  bu

s e
pbusy D e WDc cβ βφ φ= −     For all b, u, s                                       (3.18) 

By subtracting (3.18) from (3.17), which is denoted by k, the relationship in (3.19) is 

obtained.  

6

6

0.48 ( ) 0.48 ( ) 0.48 /10

48 /10 0

s g
u pb bu b

s e
p

c

c

WDo f D e o WDc

WDc

β βφ φ +− −

≥
                                    (3.19)    
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By dividing both sides of inequality (3.19) by 0.48WD, it follows that

6 4( ))( ) ( ) / ( ) /10 / ( 10s g e
u pbu b bc c cf e o W oβ βφ φ− ≥ − .  

Then, setting 6 4' )/10 / ( 10g e
bk c c o= −  yields (3.20). 

'( ) ( ) / ( )b
s

u pbu c kf e o Wβ βφ φ− ≥ .  ■                                                        (3.20)  

               

The right-hand side of inequality (3.20) is a positive number. The left-hand side is a 

stochastic variable because its value depends on the various realizations of fuel 

prices in different scenarios. To illustrate, the Figure 3.1 represents inequality (3.20).  

As can be seen in Figure 3.1, there are four areas in which the relationship between 

different values of βφ (.) for different stochastic processes is presented. Specifically, 

the feasible solution area that is shown by (∆1) and (∆2) is the area in which 

condition (3.20) holds. However, in the parts that are shown by (∆3) and (∆4), there is 

no feasible solution for inequality (3.20). The interesting point about area (∆2) is that 

the value βφ (.) for fossil fuel prices is smaller than that for electricity prices, but it is 

higher for the stochastic total running cost. The reason is the different slopes and 

positive number (k′c s
p), which are shown in Figure 3.1. As a result, in these areas, 

the value of k would be positive, and βφ (y2bus) for EVs is less than the βφ (y1bus) for 

fossil fuel vehicles. 
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Figure 3.1: The feasible solution for Proposition 3.1, which is shown by (∆1) and 

(∆2) 

 

Let yibsm denote the stochastic total running cost for technology i with brand b, taking 

into account m scenarios for mileage driven and s states for carbon prices, and let f 

denote the average fuel price during the planning horizon.  

Proposition 3.2: The βφ (y2bsm) for EVs is less than the βφ (y1bsm) for fossil fuel 

vehicles if and only if this condition holds:  

6 4( )/10 / ( 10 )g
b

s e
pb b bW c ce Wo f c o o−− < . 

 

Proof: The stochastic total running cost in which stochastic parameters exist is used 

to compare βφ (.) for the EVs and for the fossil fuels. Therefore, based on equations 

(3.3)-(3.5) and property (3.14), it follows that, for all b, m, s: 
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1 1 1

6

( ) (0.48 ) 0.48 ( )

0.48 ( )( /10 )
bsm bs m bs m

s g
m b b p

y r WD Wr D

W D o f o c c

β β β

β

φ φ φ
φ
= =

= +
.                                                        (3.21) 

Specifically, equation (3.21) holds for fossil fuel vehicles, considering mileage 

driven as the stochastic process. Moreover, for the case of EVs, the value of βφ (.) is 

obtained using property (3.14) and represented by equation (3.22), for all b, m, s: 

2 2 2

6/ 100 )

( ) (0.48 ) 0.48 ( )

48 ( )0 ( /10. b

bsm bs m bs m

m
s e

pW

y r WD Wr D

W D e c c

β β β

β

φ φ φ
φ +

= = =
                                                           (3.22) 

Therefore, by comparing (3.22) and (3.21), we derived the inequality (3.23). 

2 1
'( ) ( )bsm bsm

s
pb b by y We Wo f c o kβ βφ φ< ⇔ − <  .  ■                                                    (3.23)                         

                    

In inequality (3.23), both sides are real numbers depending on different values of 

parameters and the values of f and eb, which are the expected values of fuel prices 

and electricity prices, respectively. For illustration, inequality (3.23) is represented in 

Figure 3.2. The feasible solution areas are represented by (∆1) and (∆2). Indeed, in 

these areas, the condition in Proposition (3.2) is true, and βφ (y2bsm) for EVs is less 

than the βφ (y1bsm) for fossil fuel vehicles. 

Let yibsv denote the stochastic total running cost for technology i with brand b, taking 

into account v scenarios for fuel consumption and s states for carbon prices. 
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Proposition 3.3: The βφ (y2bsv) for EVs is less than the βφ (y1bsv) for fossil fuel 

vehicles if and only if this condition holds: 
4

6

( / /10  )
( )  

( /10 ) 

s e
b p

bv s g
p

e W c c
o

f c c
βφ

+
>

+
. 

 

Proof: The stochastic total running cost is used to compare the βφ (.) of EVs with the 

βφ (.) of EVs of fossil fuel vehicles. Based on equations (3.3)-(3.5) and properties 

(3.14) and (3.16), inequality (3.24) is obtained.  

6
1 )( ( ) 0.48 ( /10 )gs

pbsv bvy WD o f c cβ βφ φ≤ +     For all b, v, s                          (3.24) 

 

Figure 3.2: The feasible solution for Proposition 3.2, which is shown by (∆1) and 

(∆2).  
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Inequality (3.24) is obtained based on the subadditivity property (3.16), and it holds 

for fossil fuel vehicles when considering fuel consumption as the stochastic process. 

In addition, for the case of EVs, the value of βφ (.), represented by equation (3.25), is 

obtained from property (3.14). So by comparing (3.24) and (3.25), after some basic 

algebra, inequality (3.26) is derived. The right-hand side of inequality (3.26) is a 

positive number, between one and two, depending on the different values of 

parameters and the values of f and eb, which are expected values of fuel prices and 

electricity prices, respectively. However, the left-hand side is a stochastic variable 

depending on the realization of different scenarios for the fuel consumption of fossil 

fuel technologies per 100 km. Inequality (3.26) is illustrated in Figure 3.3. 

6
2 0. /  ) ( ) 48 ( 100 /10b

s e
pbsv Wy WD e c cβφ = +       For all b, v, s                                         (3.25) 

4

6

( / /10  )
( )  

( /10 ) 

s e
b p

bv s g
p

e W c c
o

f c c
βφ

+
>

+
  .   ■                                                                           (3.26)                           

Because f and eb are correlated, βφ (obv) is represented as a function of f. As 

represented in Figure 3.3, the graph is a decreasing homographic function with a 

horizontal asymptote k′′ equals to eb / (W f). The intuition behind this pattern is that 

by increasing the expected fuel prices, the βφ (obv) will decrease due to lower fuel 

consumption. Specifically, the feasible solution area, which is represented by (∆1) 

and (∆2), is the area in which condition (3.26) holds. Therefore, it follows that the 

βφ (y2bsv) for EVs is less than the βφ (y1bsv) for fossil fuel vehicles. 
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Figure 3.3: The feasible solution for Proposition 3.3, which is represented by (∆1) 

and (∆2) 

The application of the analytical results in this Chapter, as will be represented in the 

case study, gives us the general intuition that risk of EVs in comparison with other 

technologies is lower for each stochastic process. 

 

3.3 A Case Study on Sustainable Fleet Management 

An important issue when developing a model is to determine whether it is an 

accurate representation of the system studied, i.e., if it is valid (Landry et al., 1983; 

Law and Kelton, 1991; Landry and Oral, 1993). 

The term “accurate representation” is used to mean the extent to which the model fits 

the real system either in terms of structure and mechanism or in terms of output, 

depending on the context of the problem. The validity of the model was ensured in 
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using the following steps. The case presented in this section was based on: 1) real 

data from the fleet analyzed, including mileage and consumption per vehicle; 2) real 

data on the leasing costs for different types of vehicles and brands; 3) forecasts for 

the fuel prices for the planning horizon considered, based on real data; and 4) a 

model for CO2 prices estimated from real data.  

Moreover, the validity of the model is also tested by comparing the decisions 

recommended by the model with the current fleet used by the company. This is 

reported in Section 3.4 for the case in which only expected values were used: in this 

case, as is currently the case, the optimal decision is to lease diesel vehicles only.  

The goal is to obtain the optimal policy for vehicle replacement, using leasing, by 

considering a planning horizon of four years (2012 to the beginning of 2016). Three 

fuel technologies (Petrol, Diesel, and Electricity) and three brands (b1, b2, and bB,) 

are considered; bB is the benchmark. Even though they are based on real vehicles, for 

the purpose of anonymity, the brands are denoted as such. The typical consumption 

of the benchmark brand is 7.6 liters/100 km for diesel and 9.3 liters/100 km for 

petrol. A current petrol price of approximately £1.37/liter and diesel price of £1.41 

/liter are assumed. The cost for leasing the battery of the electric vehicle, for the 

benchmark brand, is £950 per year in the UK, and the cost to charge is £2.5 per 

charge (for 100 miles autonomy). (In this study, electricity and electricity charge 

prices are used interchangeably. However, indeed, the price of electricity is the price 

of each charge for the 22 kWh battery of the benchmark brand). 

Therefore, to obtain the electricity charge for other brands, the ratio of the power of 

the battery with respect to the battery of the benchmark brand (Table 3.2) can be 

used. The emissions in the UK are estimated to be approximately 81 g/km 
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(benchmark’s estimate), and for petrol and diesel, the emissions are estimated to be 

approximately 2310 and 2680 g/liter, respectively. Moreover, for carbon prices, 

because there is no clear historical trend, three states of prices (low prices, £5, 

medium prices, £10, and high prices, £20) are used. The other parameters for other 

brands, including the benchmark brand are presented in Tables 3.2 and 3.3. 

 

Table 3.2: The parameters for electric vehicles with different brands 

Brand  Cost of renting the battery per 

year(£) 

The ratio of the battery of each 

brand to the benchmark brand (22 

b1 1100 1.6 

b2 1050 1.3 

bB 950 1 

 

Table 3.3: The leasing costs and fuels consumption for cars with different brands 

Technology/Brand 
Monthly lease cost (£) Fuel consumption per 100 km 

(liter) 

Petrol-b1  230 9.8 

Diesel-b1  240 7.9 

Electric-b1  450 No fuel consumption

Petrol- b2  210 9.1 

Diesel- b2  220 6.9 

Electric-b2  400 No fuel consumption

Petrol-bB  220 9.3 

Diesel-bB 230 7.6 

Electric-bB 380 No fuel consumption

 

Given all of the assumptions about the electric version of the benchmark brand, it 

follows that they are less competitive in comparison with the diesel and petrol 
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version of it when the annual expected mileage driven is less than 19526 miles/year, 

with the last assumptions and monthly leasing costs of £220, £230, and £380 for 

petrol, diesel, and EVs, respectively. As represented in Figure 3.4, the total costs, 

including the running and investment cost for EVs, with last assumptions about the 

benchmark brand’s parameters, are less than other technologies when the total 

annual mileage is above the intersection of the diesel and electric lines. Moreover, 

petrol cars are more competitive in comparison with the other two technologies when 

the average annual mileage driven is less than 2843 miles/year. For diesel cars, it is 

economical to use them when the average annual mileage is between 2843 and 

19526 miles. These thresholds depend on fuel and carbon prices and monthly leasing 

costs. 

 

 

Figure 3.4: The total cost (running plus investment cost) versus the average mileage 

driven in one year for different technologies.  
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3.3.1 Vector Auto Regression for Forecasting Fuel Prices  

The historical data used for fuel prices is based on a time series from Jan. 2000 to 

Dec. 2011 in UK (Available online at: automotive association, 2014; government, 

2014). Because the fuel prices are correlated (Table 3.4), the method used in this 

Chapter to forecast fuel prices is Vector Auto Regression (e.g, Widiarta et al., 2007). 

The Vector Auto Regression is used in forecasting systems of interrelated time series 

for analyzing the dynamic impact of random disturbances on the system of variables. 

 

Table 3.4: Correlation matrix for fuel prices from Jan. 2000 to Dec. 2011 

 

 

 

The Vector Auto Regression approach treats every endogenous variable as a function 

of the lagged values of all of the endogenous variables in the system. The 

mathematical representation of Vector Auto Regression is the following:  

 

Yt = A1 Yt-1 +…+ Ap Yt-p +BXt + et  

 

where Yt is a vector of endogenous variables, Xt is a vector of exogenous variables, 

A1, A2, …, Ap and B are matrices of coefficients to be estimated, and et is a vector of 

 Petrol Diesel Electric
petrol 1.00 0.99 0.85 
Diesel 0.99 1.00 0.88 
Electric 0.85 0.88 1.00 
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white noises that may be contemporaneously correlated but are uncorrelated with 

their own lagged values and uncorrelated with all of the right-hand side variables. 

Because fuel prices are not stationary, first-order differentiation is used to convert 

them to a stationary process, Akaike (1977), Fuller (1976), Lütkepohl (1991), 

Schwarz (1978).  

As seen from Table 3.5, based on the Augmented Dickey-Fuller test, Fuller (1976), 

the differentiated fuel prices with one order differentiation are stationary because the 

Null Hypothesis, which suggests that the differentiated fuel price has a unit root, is 

rejected.  

Table 3.5: Results for differentiated fuel prices with one order differentiation 

 

Null Hypothesis: D(Petrol) has a unit 
root 

t-statistic Prob. 

Augmented Dickey-Fuller test 
statistic 

-7.86 0.00 

Test critical 
values: 

1% level -3.47  
5% level -2.88 
10% level -2.57 

Null Hypothesis: D(Diesel) has a unit 
root 

t-statistic Prob. 

Augmented Dickey-Fuller test 
statistic 

-7.22 0.00 

Test critical 
values: 

1% level -3.47  
5% level -2.88 
10% level -2.57 

Null Hypothesis: D(Electricity) has a 
unit root 

t-statistic Prob. 

Augmented Dickey-Fuller test 
statistic 

-8.01 0.00 

Test critical 
values: 

1% level -3.47  
5% level -2.88 
10% level -2.57 

 

The next step is to compute various criteria to select the lag order of VAR. Table 3.6 

displays various information criteria for all lags up to the specified maximum. The 
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criterion that has the lowest value between different Lags should be selected. Based 

on Table 3.6, because the Schwarz Information Criterion (SC) and the Akaike 

information criterion (AIC), which have similar definitions, Schwarz (1978) and 

Akaike (1977), show different lag orders, the third criterion, which is the Hannan-

Quinn information criterion (HQ), is also considered. The HQ criterion (Hannan and 

Barry, 1979) has the lowest value for the lag 1 between different lags; as a result, 

VAR with lag order equals one is used. 

Table 3.6: Different values for criteria for choosing the order of Lag 

                                                              Vector Auto Regression Lag Selection Criteria 
Lag AIC SC HQ 

0 -14.56 -14.49 -14.53 
1 -14.98 -14.71 -14.87 
2 -14.86 -14.4 -14.67 
3 -14.86 -14.2 -14.59 
4 -14.93 -14.08 -14.59 
5 -15 -13.95 -14.57 
6 -14.93 -13.68 -14.42 
7 -14.88 -13.44 -14.3 
8 -14.86 -13.22 -14.19 

 
 

In the next section, the AR root’s graph (Lütkepohl, 1991) is obtained. The estimated 

VAR is stable (stationary) if all roots have a modulus less than one and lie inside the 

unit circle. If the VAR is not stable, certain results are not valid. There will be kp 

roots, where k is the number of endogenous variables and p is the largest lag. 

Therefore, based on the fact that there are three endogenous variables, which are 

petrol, diesel, and electricity, and the largest lag order is one (Table 3.6), there 

should be three roots. As can be seen in Figure 3.5, all of the roots are inside the unit 

circle, and the estimated VAR is stable (Lütkepohl, 1991). Lastly, the coefficients for 

simultaneous equations of VAR are shown in Table 3.7. 
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Figure 3.5: Unit circle for testing the stability of estimated VAR 

Table 3.7: The coefficients for solving the VAR model for fuel prices for a sample 
of data from Jan. 2000 to Dec. 2011 

Vector Auto Regression Estimates  
Standard error in ( ) and t-statistics in [ ] 

 D(Petrol) D(Diesel) D(Electricity) 
D(Petrol(-1)) 0.112 -0.077 0.044 

(0.173) (0.160) (0.239) 
[0.646] [-0.484] [0.187] 

D(Diesel(-1)) 0.261 0.506 -0.201 
(0.184) (0.170) (0.254) 
[1.41] [2.96] [-0.79] 

D(Electric(-1)) -0.211 -0.123 0.354 
 (0.059) (0.054) (0.080) 
 [-3.57] [-2.25] [4.34] 

C 0.004 0.003 0.006 
(0.002) (0.001) (0.002) 
[2.09] [1.81] [2.11] 

R-squared 0.22 0.22 0.143 
Log Likelihood 327.46 338.27 282.94 

Akaike AIC -4.654 -4.809 -4.01 
Schwarz SC -4.56 -4.72 -3.92 

Mean dependent 0.004 0.004 0.008 
S.D. dependent 0.02 0.02 0.03 

 

Let pt, dt, and et denote petrol, diesel, and electricity prices at time t, then: 

1 1 20.004 0.211( )t tpt t tpp e e ε− − −= + − − +                                     (3.27) 
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1 2 1 20.003 1.506 0.506 0.12( ) tdt t t t td d d e e ε− − − −= + − − − +                                      (3.28) 

 

1 20.006 1.354 0.354 tet t te e e ε− − += + −                                                      (3.29) 

 

(0, ),  (0, ),  (0, )p d etp tetdN N Nσ σ σε ε ε= = =   

 

In equations (3.27)-(3.29), each fuel price is described as a function of the significant 

lagged values of two other fuel prices and its own white noise (εt) that are 

uncorrelated with their own lagged values and all of the right-hand side variables. 

Moreover, these equations show that by considering two additional fuel prices as 

endogenous variables in the main equation for forecasting each of them, the 

correlation between the fuel prices is taken into account (Table 3.4). Equations 

(3.27)-(3.29) are used in forecasting fuel prices over the planning horizon. 

 

3.3.2 Modeling Uncertainty about the Driven Mileage  

As presented in Figure 3.6, in the dataset of 2789 vehicles, the monthly mileage 

driven follows a lognormal distribution with the mode at approximately 500 miles 

per month. In this sample, 9.2% of the vehicles had zero mileage during the period 

analyzed.  

As seen in Table 3.8 the mean mileage is approximately 834 miles per month, and 

the median is 750 miles per month. This result implies that 50% of the vehicles are 
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used less than 750 miles per month. For considering the mileage driven by a car, the 

scenarios are generated using a lognormal distribution with its parameters estimated 

to fit the data (Evans et al., 2000). 

 

 

Figure 3.6: Actual distribution of monthly mileage driven by cars based on the data. 

 

Table 3.8: Descriptive statistics for the monthly mileage driven by cars 

Mileage driven per month Miles 

Mean 834.27 

Mode 500.00 

Median 750.00 

Std. Deviation 510.17 

 

3.3.3 Modeling Uncertainty about Fuel Consumption 
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Another stochastic parameter that is considered in the analysis is fuel consumption 

per 100 km, both by diesel and petrol cars. Because fuel consumption depends on the 

different conditions under which the vehicles are used (e.g., motorways vs. urban 

areas) and the skill of the driver, it is essential to consider it as a stochastic process. 

As shown in Figure 3.7, the fuel consumption per 100 km, based on the real data 

used in the present study, follows a lognormal distribution. In this case, our data 

include 2789 diesel vehicles with a consumption mode at approximately 5 liters/100 

km; in the period under analysis, 13.6% of the vehicles had an average consumption 

of approximately 4 liters per 100 km.  

As seen in Table 3.9, the mean of fuel consumption is approximately 6.9 liters per 

100 km, and the median is 6.22 liters. This result implies that 50% of the vehicles 

have less than 6.22 liters consumption per 100 km. Therefore, for considering fuel 

consumption by a car, the scenarios can be generated using a lognormal distribution 

with its parameters estimated to fit the data (Evans et al., 2000). 

We should also mention that the total mileage that should be driven by vehicles in 

each month (Dm) regardless of technology is the same for petrol, diesel, and electric 

vehicles. But, the fuel consumption per 100km for petrol and diesel are different 

based on Table 3.3. So, based on competitive advantage of each technology in terms 

of saving in running cost which is a function of fuel prices, carbon prices, amount of 

emissions, and fuel consumption (equations 3.3, 3.4, and 3.5), and fixed cost which 

is the function of monthly lease cost and battery prices for EVs (equations 3.6, and 

3.7), the optimal technology is selected by the output of the model. 
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Figure 3.7: Actual distribution of fuel consumption by cars per 100 km based on the 

data 

 

Table 3.9: Descriptive statistics for the fuel consumption per 100 km by a car 

Consumption per 100 km  liter 

Mean 6.9 

Mode 5.00 

Median 6.22 

Std. Deviation 2.3 

 

3.4 Case Study Results 

This section presents the results of the case study, first taking into account each 

stochastic process separately and then analyzing their joint effect on the cost and risk 

associated with each different type of vehicle. The generation of the fuel price 
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scenarios for each technology is made with equation (3.1). As a two-stage problem is 

considered and decisions are made at the first stage, the average of fuel prices is 

obtained for each scenario during the planning horizon. Moreover, for the other two 

stochastic processes, which are mileage driven and fuel consumption, the scenarios 

are generated based on a fitted distribution, which is a lognormal with the parameters 

matched with the data, as explained in Sections 3.3.2 and 3.3.3. 

In each set of simulations, when considering each stochastic process separately, a 

total of 12000 scenarios (4000 scenarios for each of them and 3 states for carbon 

prices) are used. Moreover, when considering all of the stochastic processes 

simultaneously, due to the higher complexity of the model, 24000 scenarios (20 

scenarios for fuel prices, 20 scenarios for mileage driven, 20 scenarios fuel 

consumption, and 3 states for carbon prices) are used.  

The number of scenarios is obtained based on trial and error for convergence of the 

model. (It has been determined that if the number of scenarios increases, the results 

will be not be changed. It has also been verified that if they decrease, there will be an 

inconsistency problem). In addition, the confidence level β equals 0.9. The planning 

horizon is assumed to be four years from the beginning of 2012 to the beginning of 

2016, which is the standard leasing duration of the vehicles.  

Regarding the interpretation of the CVaR in the following tables, it should be noted 

that there is no bad or good CVaR. Indeed, the CVaR itself represents the expected 

loss faced by the company with a given probability. A way to better interpret the 

CVaR is to consider the gap between expected cost and CVaR as a measure of risk. 

The lower this gap, the lower the risk. Moreover, the value of CVaR also depends on 

the confidence level (β). The closer the value of β is to 1, the higher the values of 
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CVaR: in this case, the fleet manger is more conservative. We also have compared 

the results with risk neutral formulation. So, using CVaR improves the model for 

risk measuring over the traditional models that only take into account the 

minimization of the expected cost. 

First, the impact of fuel prices on the choice of the vehicle to be leased is analyzed. 

If the expected values for mileage driven presented in Table 3.8 and fuel 

consumption depicted in Table 3.9 are taken into account, then the optimal choice of 

vehicle, as a function of the weights of the expected cost and of the CVaR, is 

summarized in Table 3.10.  

In Table 3.10, when ω changes from 0 to 0.7, i.e., the focus is on minimizing risk 

rather than minimizing expected cost, the optimal policy is to choose an electrical 

vehicle from the benchmark brand (bB). In contrast, by increasing the weight of the 

expected cost, i.e., ω ranges from 0.7 to 1, the best option is to lease the diesel 

vehicle, and b2 is the chosen brand due to its better capital and running costs. 

Moreover, by choosing a diesel vehicle, there is a reduction in expected cost of 

approximately £ 5.91 K (25.49%) and an increase in the associated CVaR by £ 16.06 

(59%) K. That is, by choosing a diesel vehicle, there is an increase in the risk of 

approximately £ 0.4 per mile for the expected mileage over the planning horizon due 

to the volatility in fuel prices.  

Furthermore, the expected value of the monthly mileage driven by cars, which is 834 

miles per month (Table 3.8), is taken into account. As mentioned in Section 3.3, if 

this value decreases to approximately 250 miles per month, then rather than a diesel 

vehicle, a petrol vehicle will be the optimal choice for minimizing the cost. In 

contrast, if this value increases to approximately 1700 miles per month, then the 
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electric vehicle will be chosen rather than the diesel vehicle (Figure 3.4). However, 

for minimizing risk, the electrical vehicle is always the optimal choice regardless of 

the expected value of the monthly mileage driven in the model (Proposition 3.1). 

 

Table 3.10: Results for considering the fuel prices, in 000£, as a stochastic process 

in the model  

ω  0  0.1  0.3  0.5  0.7  0.9  1 

weighted­ 27.22  26.82 26.02 25.20 24.40 19.88  17.27 
expected­ 23.18  23.18 23.18 23.18 23.18 17.27  17.27 
CVaR(K£)  27.23  27.23 27.23 27.23 27.23 43.29  51.00 
VaR(K£)  27.06  27.06 27.06 27.06 27.06 43.29  51.00 
Technology 

 B d 

Electric  Electric Electric Electric Electric Diesel  Diesel 

 

Next, the impact of mileage uncertainty on the optimal choice of vehicle is 

considered. Assuming that the expected values for fuel prices are in Table 3.11, the 

associated risks (due to fuel price uncertainty) and costs for a vehicle are computed 

for the planning horizon. The results are depicted in Table 3.12. When the value of ω 

is within the range 0 to 0.7 the electric vehicle is the optimal choice. However, for 

values of ω above 0.7 the diesel vehicle is chosen instead. Moreover, by choosing 

the diesel vehicle as the optimal choice we have a reduction in total cost which is 

about £ 5.84 K (25.15%) and increasing the associated CVaR by £ 42.13 K 

(127.4%). Therefore, leasing an electric car for four years can mitigate the risk due 

to uncertainty in the mileage driven. A formal proof is provided in Proposition 3.2. 
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Table 3.11: Expected fuel prices (£) from 2012 to the beginning of 2016 

 

 

Table 3.12: Results for considering the mileage driven by car, in 000£, as the 
stochastic process in the model for four years 

ω 0 0.1 0.3 0.5 0.7 0.9 1 
weighted-cost(K£) 33.06 32.08 30.10 28.13 26.16 23.15 17.36 
expected-cost (K£) 23.20 23.20 23.20 23.20 23.20 17.36 17.36 
CVaR (K£) 33.07 33.07 33.07 33.07 33.07 75.20 167.00 
VaR (K£) 30.16 30.16 30.16 30.16 30.16 58.38 167.00 
technology 
 brand 

Electric 
bB  

Electric
bB  

Electric
bB  

Electric
bB  

Electric
bB  

Diesel 
b2  

Diesel
b2  

 

Next, the impact of fuel consumption in the choice of vehicle is considered. The 

benchmark fuel consumption for each technology and its brand (Table 3.3) and the 

fitted standard deviation for each brand are used to generate the scenarios. The 

expected values for fuel prices (Table 3.11) and mileage driven (Table 3.8) are 

assumed. The results are summarized in Table 3.13. As seen by changing the values 

of ω from 0 to 0.7, it is optimal to choose the electric vehicle for minimizing the risk 

and cost simultaneously. However, if the value of ω increases more than 0.7 up to 1, 

then the diesel vehicle is the optimal choice for minimizing cost. Moreover, by 

choosing the diesel vehicle, there is a reduction in total cost of approximately £ 6.08 

K (26.24%) and an increase in the associated CVaR of approximately £ 29.08 K 

(108.55%). As a result, leasing an electric vehicle significantly decreases the risk due 

to volatility in fossil fuel consumption. A formal proof for this issue is provided in 

Proposition 3.3.  

 2012 2013 2014 2015 Average (four years) 

Petrol(£) 1.37 1.40 1.42 1.45 1.41 

Diesel(£) 1.41 1.45 1.50 1.55 1.48 

Electric(£) 2.54 2.65 2.76 2.87 2.70 
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Table 3.13: Results for considering fuel consumption by petrol and diesel cars, in 
000£, as the stochastic process in the model for four years 
 

ω 0 0.1 0.3 0.5 0.7 0.9 1 
weighted-cost(K£) 26.79 26.43 25.71 24.99 24.27 20.97 17.10 
expected-cost (K£) 23.18 23.18 23.18 23.18 23.18 17.10 17.10 
CVaR (K£) 26.79 26.79 26.79 26.79 26.79 55.87 96.00 
VaR (K£) 26.79 26.79 26.79 26.79 26.79 48.38 96.00 
technology 
 brand 

Electric 
bB  

Electric
bB  

Electric
bB  

Electric
bB  

Electric
bB  

Diesel 
b2  

Diesel
b2  

 

Another important issue is the ranking of risk drivers in the model. As seen by 

comparing Tables 3.10, 3.12, and 3.13, the diesel vehicle (brand b2) and the electric 

vehicle (brand bB) are the optimal choices based on different values of ω. Indeed, if 

you are more risk averse, you choose electric technology, and if you are more risk 

neutral, you choose diesel technology with the corresponding brands as the optimal 

choices. However, the petrol vehicle and brand b1 and are not competitive with the 

aforementioned technologies and brands in terms of risk or cost minimization. This 

is why only the risk drivers of diesel and electric vehicles with associated optimal 

brands are considered in Figures 3.8 and 3.9, respectively. 

As seen from Figure 3.8, the most important risk driver when a diesel vehicle is used 

with brand b2 is mileage driven, which has the highest value of CVaR, followed by 

fuel consumption and, finally, by fuel prices. This surprising result is very specific to 

the data, and it is justified by the large volatility in the distribution of fuel 

consumption presented in Figure 3.7.  

Furthermore, in Figure 3.9, the value of CVaR for different risk drivers is 

represented when EVs of the benchmark brand are used. In this case, the fuel price 

ranked as the second most important risk factor for EVs in terms of the value of 
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CVaR. In addition, when Figures 3.8 and 3.9 are compared in terms of the value of 

CVaR, as mentioned before in Propositions 3.1, 3.2, and 3.3, the value of CVaR for 

diesel vehicles is higher than for EVs for each corresponding stochastic process. 

 

 

Figure 3.8: Comparing risk drivers in terms of value of CVaR, in 000£, from 2012 

to 2016 for diesel technology with brand b2. 

 

 

Figure 3.9: Comparing risk drivers in terms of the value of CVaR, in 000£, for four 

years from 2012 to 2016 for benchmark brand (bB). 
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Now, the complete stochastic model when there is uncertainty due to fuel prices, 

mileage driven, and fuel consumption is considered. The results for the full model 

are presented in Table 3.14. As seen by changing values of ω from 0 to 0.7, the 

optimal decision is to lease an electric vehicle. However, if the value of ω increases 

more than 0.7 up to 1, then the diesel vehicle is the best option. Moreover, by 

choosing the diesel vehicle as the optimal choice, there is a reduction in total cost, 

which is approximately £ 6.26 K (27.12%), and an increase in the associated CVaR 

by £ 34.52 K (116.58%). Therefore, as a general conclusion, it seems that leasing an 

electric vehicle can significantly mitigate risk exposure at an additional expected 

cost. 

One important conclusion, when comparing the CVaR by considering all stochastic 

processes in the model with the case when only one stochastic process is considered 

separately is that the CVaR when all of the stochastic processes are considered is less 

than sum of the CVaRs for the stochastic processes separately. This result is 

supported by the subadditivity property of coherent measures, as presented in 

equation (3.30), Artzner et al. (1997). Therefore, by taking into account inequality 

(3.30) and (3.31), it can be concluded that the analytical results are supported by the 

computational results in Tables 3.10, 3.12, 3.13, and 3.14.  

 

( ) ( ) ( ) ( ) X Y Z X Y Zφ φ φ φ+ + ≤ + +                                                                           (3.30) 

( , , ) ( ) ( ) ( )ib ib ib ibiu m iu mbv bvf D o f D oβ β β βφ φ φ φ≤ + +                                                       (3.31) 

Lastly, the total cost per mile for each mileage scenario (per month), for the b2 Diesel 

vehicle and bB EV are considered. As seen from Figure 3.10, the total cost per mile 
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has a decreasing trend as the average mileage driven increases per month in each 

scenario. Indeed, for high-mileage vehicles, both trends converge to £ 0.34 per mile. 

However, for normal expected mileage, which is 834 miles per month (Table 3.8), 

there is a difference of approximately £ 0.15 per month between the two choices. 

Therefore, it follows that if the high-mileage case is considered (Section 3.3, Figure 

3.4) and other stochastic processes are included in the decision support model (i.e., 

fuel prices and fuel consumption), the EV is the optimal choice.  

 

Table 3.14: Results for considering fuel prices, mileage driven, and fuel 
consumption, in 000£, as stochastic processes in the model for four years 

ω  0  0.1  0.3  0.5  0.7  0.9  1 
weighted­
cost(K£) 

29.61  28.96 27.65 26.35 25.04 21.55  16.82

expected­cost 
(K£) 

23.08  23.08 23.08 23.08 23.08 16.82  16.82

CVaR (K£)  29.61  29.61 29.61 29.61 29.61 64.13  98.00
VaR (K£)  28.96  28.96 28.96 28.96 28.96 55.00  98.00
technology 
 brand 

Electric 
bB  

Electric
bB  

Electric
bB  

Electric
bB  

Electric
bB  

Diesel 
b2  

Diesel
b2  

 

 

Figure 3.10: Total cost in £ per mileage for diesel technology with brand b2 and 
electric technology with the benchmark brand for each scenario of mileage driven in 
each month  
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3.5 Summary 

Fleet management is an important tool for reducing CO2 emissions and fuel costs 

and improving transportation sustainability. This Chapter proposes a stochastic 

mixed integer linear programming model that incorporates risk concerns (CVaR) to 

analyze the choice of technology by a firm that aims to replace some of its vehicles. 

The firm minimizes expected cost and risk simultaneously, taking into account the 

uncertainties that exist in the real situation: carbon prices, fuel prices, mileage 

driven, and fuel consumption. 

Specifically, the analytical results show that for each stochastic process of fuel 

prices, mileage driven, and fuel consumption, the value of CVaR for EVs is less than 

for fossil fuel vehicles under certain conditions. For example, for the case involving 

fuel prices treated as a stochastic process, leasing a diesel vehicle rather than an 

electric vehicle increases the value of CVaR by 59%. This value for mileage driven 

and fuel consumption is 127.4% and 108.6%, respectively. In addition, the results 

show that if each stochastic process is considered separately, the most important risk 

driver for a diesel vehicle is the mileage driven, followed by fuel consumption, and 

lastly, fuel prices. For the case of EVs, the first important risk factor is mileage, 

followed by fuel prices and then CO2 prices. 

Furthermore, when all of the stochastic processes are considered together, leasing a 

diesel vehicle rather than an electric vehicle for four years (2012 to 2016) decreases 

the total expected cost by approximately £ 6.26 K (27.13%) and increases the 

associated risk by £ 34.52 K (116.6%) due to uncertainty in the carbon prices, fuel 

prices, mileage driven, and fuel consumption. Moreover, by considering all 
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stochastic processes together, it can be seen that the risk of the whole model is less 

than the summation of risk for each stochastic process. 

Lastly, by comparing the total cost per mile for each mileage scenario (per month) 

and including other uncertainty factors in the decision support model, it can be 

concluded that for high-mileage vehicles, the EV is the optimal choice.  

In the next Chapter, we consider the fleet replacement problem in a dynamic setting. 

Moreover, we present the concept of time consistency for a dynamic risk measure 

and we discuss it for CVaR. Then, by using clustering method and using it in real 

data, we test whether clustering can decrease CVaR and expected cost. 
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CHAPTER 4 

 

 

A MULTI-STAGE STOCHASTIC 

PROGRAMMING MODEL FOR MANAGING A 

SUSTAINABLE FLEET PORTFOLIO SYSTEM 

 

Au chapitre 4, nous prolongeons le travail du chapitre 3 dans une configuration à 

étapes multiples. Dans ce contexte, les décisions sont mises à jour à chaque période 

au cours de laquelle l’interaction entre les différents types de véhicule aux 

différentes capacités a été examinée à l’aide de l’analyse de concentration. Dans ce 

chapitre, comme contribution méthodologique, nous proposons une nouvelle 

formulation récursive de la CVaR, qui est cohérente dans le temps, dans un cadre 

dynamique. En outre, grâce à l’analyse de concentration, nous tenons compte de 

l’effet de portefeuille de l’utilisation de différentes technologies, sur le système du 
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parc, au niveau de la CVaR et du coût escompté. Enfin, nous exposons les résultats 

analytiques afin de mesurer l’effet de portefeuille et la cohérence dans le temps 

d’une nouvelle formulation de la CVaR et nous appliquons le modèle dans une étude 

de cas réel. 

In this Chapter, we extend the model in Chapter three to a multi stage setting. In this 

context the decisions are updated at every period (Figure 4.1). By multiple stages we 

mean a dynamic policy in which we can find the optimal policies at each node of 

scenario tree for the decisions variables which are the optimal number of new leased 

vehicles, value at risk, and CVaR based on realization of stochastic processes. The 

problem is formulated by a Mixed Inter Programming (MIP) model. In terms of the 

difference of the model in this Chapter with existing fleet management models which 

makes it unique, because of the following reasons: 

(1) We have compared the results of risk neutral formulation (ω=1), and risk averse 

formulation (ω=0 and ω=0.5) which is the advantage of using this model over 

existing models in the literature. (2) In the literature none of fleet management 

models have taken into account the risk and cost minimization, simultaneously in the 

objective function. (3) It has taken into account the time consistency of CVaR in a 

dynamic setting with a new recursive formulation. (4) The computational results also 

in this chapter show the importance of using clustering in the model with different 

technologies and capacities and their impact on the risk and expected cost in the fleet 

management system. 
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Figure 4.1: The replacement model for fleet managers. 

 

The remainder of this Chapter proceeds as follows. In Section 4.1 we develop a 

multi-stage stochastic programming model for minimising the weighted average of 

the expected cost and risk, considering the existing constraints and uncertainties in 

the market. In Sections 4.2 and 4.3, we derive the analytical results for the 

introduced time consistent version of CVaR. In Sections 4.4 and 4.5, we present a 

real case study and, finally, we present the main conclusions in Section 4.6. 

4.1 A General Model for the Management of Fleet System  

In this section, we introduce a multi-stage stochastic programming model to obtain 

the optimal number of vehicles to be leased, taking into account the constraints that 

exist to minimise a cost function that considers expected cost and CVaR during the 

planning horizon. The notation used is summarized in Tables 4.1(a) and 4.1(b). In 

Figure 4.2, at each node, we have a vector of stochastic processes, namely, fuel 

prices, CO2 prices, mileage driven, and fuel consumption for fossil fuel technologies, 

Minimization of weighted expected 
cost and risk during leasing period  

Leasing and replacement decisions 
for vehicles with appropriate   
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year 
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leasing period 

   
   
   

  R
ep

la
ce

m
en

t  
 M

od
el

 



www.manaraa.com

105 

per 100 km. We consider five technologies: fossil fuels (petrol, diesel), hybrids 

(petrol, diesel), and EVs.  

Table 4.1(a): Indices and decision variables 

i I={fossil fuels, hybrids, and electric}  

a A= {1, 2,.., A} index for age of the vehicles 

n N= {1,2,…,N }index for nodes in scenario tree 

t T= {1, 2, ..,T}index for time periods in year over planning horizon 

st S= {1, 2,.., St } index for number of branches (states) at each stage 

k K={1, 2,.., K} index for different clusters of vehicles 

: Tree structure for parent nodes n and child nodes m 

: Structure for the association of each node n and each stage of t 

xnia: Total number of vehicles with technology i and age a currently leased at node n  

yni: Number of new vehicles with technology i that company leases at node n 

: Value at risk at confidence level of β at node n  

: Conditional value at risk at confidence level of β at node n 

zn: Auxiliary stochastic variables for loss function at node n  

 

In equation (4.1), we calculate the running cost for fossil fuel and hybrid vehicles per 

100 km, rni, at each node; in this equation on denotes the fuel consumption of fossil 

fuels and hybrids per 100 km at each node. The running cost for EVs per 100 km, rni, 

is calculated using equation (4.2). We also take into account fuel prices for each 

technology (fni) and CO2 emissions at each node ( ) in (4.1) and (4.2). Furthermore, 

cg denotes the CO2 emissions (g/litre) for fossil fuels and hybrids, and ce shows the 

CO2 emissions for EVs (g/km). Finally, W represents the conversion coefficient from 

miles to kilomteres. 

 

∈

∈

∈

∈

∈

∈

,n mΨ

,t nΩ

n
βα

n
βφ
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Table 4.1(b): Parameters of the model. 

 

W: Conversion coefficient of mileage to km 

ω: Parameter for trade-off of risk and cost in the objective function 

β: Confidence level for calculating CVaR and VaR 

Gk: Number of vehicles in cluster k 

Ln: Loss function at node n 

hna: Initial condition of the fleet system with fossil fuel technology at node n, age a 

fni: Fuel price for technology i at node n 

on: Fuel consumption at node n 

Dn: Monthly mileage driven at node n 

Qn: Expected cost function at node n 

rni: Running cost per 100 km for technology i at node n  

: CO2 prices at each node n 

ce: CO2 emissions, g per km, for electrical technology  

: CO2 emissions, g per litre, for fossil fuel and hybrid technology  

li: Monthly lease cost for each technology i  

Me: Monthly lease cost for EV batteries  

λni: Total annual running cost for technology i at node n 

μi: Total annual fixed cost for technology i  

p
nc

g
ic
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Figure 4.2: The node-based tree model and corresponding stages (3 branches at each 

node). 

 

, i=fossil fuels, hybrids                     (4.1) 

 

, i=electric                                        (4.2) 

 

As a result, based on equations (4.1) and (4.2), we calculate the total running cost at 

each node, , using equation (4.3), in which Dn represents the monthly mileage 

driven at node n. 

 

6( /10 )                    p g
ni n ni n ir o f c c n N= + ∀ ∈

6+ 100(c /10 )                   e pni
ni n

fr c n N
W

= ∀ ∈

niλ
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,i                                                       (4.3) 

 

The total investment cost is represented by (4.4) for fossil fuels and hybrid 

technologies and by (4.5) for EVs. Because we take into account the leasing 

contracts for providing different vehicle types in the fleet system, we use the 

monthly lease cost, represented by li, to obtain the fixed cost at each node. Moreover, 

for EVs we have an extra investment cost, which is the monthly lease cost for 

batteries, as presented in equation (4.5) by Me.  

 

                          i = fossil fuels, hybrid                                                 (4.4) 

 

                           i = electric                                                         (4.5) 

 

Our objective is to minimise the weighted average of CVaR and cost at the root 

node. The decision variable is yni, which denotes the number of vehicles with 

technology i that are replaced, at each node, at the beginning of each year due to the 

retirement of contracts for leasing of the vehicles. Each firm aims to solve the mixed 

integer multi-stage stochastic programming model in equations (4.6)-(4.17). 

 

   

1 1
, ,

 (1 )
nia ni nx y
Min Q

β

β

α
ω ω φ+ −                                                                                           (4.6)                         

 

12 /100                           ni ni nWr D n Nλ = ∀ ∈

12  i ilμ =

12( )i i el Mμ = +



www.manaraa.com

109 

s.t. 

 

 = fossil fuel                                                                             (4.7)                         

 

                                                                                           (4.8)                         

 

                                                                                (4.9)                         

  

                                                          (4.10)                         

  

                                                                                 (4.11)                         

  

                                                (4.12)                         

 

                                                             (4.13)    

                                   

   
.         ( , )m m n n mz L n mβα≥ − ∀ ∈Ψ                                                                        (4.14)                        

  

,              ( , )m m n n mv Q n mβα≥ − ∀ ∈Ψ                                                                    (4.15)                        

  

1   ,ia nax h a A i= ∀ ∈

1   ,ni niy x n N i I= ∀ ∈ ∈

,0      if -3ni t ny n t T= ∀ ∈Ω ≥

( 1) ,   , ( , )mia mi ni a n nnx y x a A n m−= + ∀ ∈ ∀ ∈Ψ

   nia na
i a a

x h n N≥ ∀ ∈∑∑ ∑

6( ) /10                    Nn ni i nia
i a

L x nλ μ= + ∀ ∈∑∑

,
( , )

1 ( )     ( , )n n m n m
n mt

Q L Q n m
S Ψ

= + ∀ ∈Ψ∑
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( , ) ( , )

1 1
(1 )n n m m

n m n mt t

z
S S

β β

ψ ψ

φ α φ
β

= + +
− ∑ ∑                                                        (4.16) (a)                          

 

( , )

1 
(1 )n n m

n mt

v
S

β β

ψ

φ α
β

= +
− ∑                                                                           (4.16) (b)                         

 

                                                                                          (4.17)                         

 

, {0},and  , ,   nia ni n m mx y N z and v Rβα +∈ ∈                                                             (4.18)                         

The objective function (4.6) minimizes the weighted average of expected cost, Q1, 

and CVaR, , at the root node. Obviously, if ω equals 1, only the expected cost is 

minimized and if ω is equal to zero, only CVaR is minimized. Equation (4.7) shows 

that the initial condition of the fleet system, hia, which comprises fossil fuel vehicles 

of different ages, should be equal to total number of the vehicles, x1ia, at the root 

node. In equation (4.8) we determine the number of new leased vehicles at each 

node, yni, required to replace the segment of new vehicles of the total vehicles in the 

fleet system, xni1, due to retirement of the older vehicles at the corresponding node. 

In addition, equation (4.9) shows that the planning horizon for decision variable yni is 

four years, after which there will be no new leased vehicles in the fleet system. 

Equation (4.10) shows that the total number of vehicles at each child node, xmia, is 

equal to the number of new leased vehicles, ymi, plus the number of vehicles, xnia, in 

the predecessor node. Moreover, equation (4.11) represents that the total number of 

vehicles for all technologies and ages, , at each node should be greater than 

or equal to the number of vehicles needed, , at the corresponding node. 

,0        nn t n
βα = ∀ ∈Ω

1
βφ

nia
i a

x∑∑

na
a

h∑
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Equation (4.12) shows the loss function (total cost), Ln, at each node, which is 

composed of the running cost, λni, and fixed cost, μi, at the corresponding node. In 

addition, equation (4.13) represents the recursive formula for calculating the 

expected cost function at each node, Qn, which is equal to the loss function, Ln, at the 

corresponding node plus the average of cost functions, , in the 

successor nodes. To take into account the time consistency issue of CVaR (Shapiro, 

2011), we use equations in (4.16). In (4.16) we have defined two different risk 

measures. The first risk measure, i.e., (4.16) (a), take into account the effect of CVaR 

at the child nodes and we name it Recursive Expected CVaR (RECVaR). The second 

one, i.e., (4.16) (b) is adapted from Shapiro (2011). In addition, equation (4.17) 

shows that VaR, , at the final stage should be zero because there is no uncertainty 

at this stage and all the values of the stochastic processes are realized. Finally, (4.18) 

is the constraint for the integer, xnia and yni, and non-negative, ,  zn, and vm 

decision variables. 

 

4.2 Time Consistency of Dynamic Risk Measure 

In the recent literature, time consistency is represented to be one important 

requirement to get appropriate optimal decisions, for multistage stochastic 

programming models. Papers on time consistency are categorized in two different 

approaches: the first one concentrates on risk measures and the second one on 

optimal policies (Rudloff et al., 2014). 

The first approach says that, in a dynamic setting, if some random payoff A is 

always riskier than a payoff B conditioned to a given time t+1, then A should also be 

( , )

1 ( ) m
n mt

Q
S Ψ
∑

n
βα

n
βα
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riskier than B conditioned to t. It is shown that this property leads to so called time 

consistent dynamic risk measure suggested by several authors, e.g., Detlefsen et al., 

(2009). Other definitions, such as acceptance and rejection consistency, are also 

developed in the literature, e.g., Cheridito et al. (2006); Kovacevic and Pug (2009). 

The second approach, defined by Shapiro (2009), is on time consistency of optimal 

policies in multistage stochastic programming models. Consider a T-stage scenario 

tree representing the evolution of the corresponding data process (Figure 4.2). This 

scenario tree represents a finite number of possibilities of what can happen in the 

future. At stage (time) t = 1, we have one root node denoted by n1. At stage t ≥ 2, we 

have St branches at each node n (in Figure 4.2, we have assumed St to be equal to 3). 

Each branch is connected to the predecessor node by an arc. By  we denote the 

set of all nodes at stage t=1, 2,..., T. Moreover,  denotes the 

random process for the realisation of the stochastic parameters of CO2 prices ( ), 

fuel prices for each technology (fni), mileage driven (Dn), and fuel consumption (on) 

at each node n and stage t. In addition, we denote  as the set of nodes and 

children nodes. The children nodes (m) of node n at stage t are nodes that can happen 

at the next stage t+1. A scenario representing a particular realisation of the data 

process is a sequence of nodes and children nodes, such that . 

Thus far we have not said anything about the optimality of our decisions. At every 

node (state)  of the fleet system at time t, we have information about the past, 

i.e., we know the history of the process from the root node to the current state. A 

basic concept of the multistage stochastic programming model is the requirement of 

nonanticipativity (Shapiro, 2009). That is, our decisions should be a function of the 

,t nΩ

( , , , )p
ni n ni n nc f D oξ =

p
nc

,n mΨ

,( , ) n mn m ∈Ψ

,t nn∈Ω
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history of the data process available at the time t, when decisions are made. We also 

have an idea of which scenarios could and could not happen in the future. Thus, it is 

natural to consider the conceptual requirement that an optimal decision at state n 

should not depend on states that do not follow n, i.e., cannot happen in the future. 

That is, the optimality of our decision at state n should only involve future children 

nodes (m) of state n. This principle is called time consistency (Shapiro, 2009). This 

time consistency requirement is closely related to, although not the same as, the 

Bellman’s principle used to derive dynamic programming equations. The standard 

risk neutral formulation of multi-stage programming problems satisfies this 

principle. On the other hand, some risk-averse stochastic programming problems do 

not satisfy this requirement (Shapiro, 2009). Other alternatives have been proposed 

by Boda and Filar (2006) and Cuoco et al. (2008), however none of them used the 

recursive set up of time consistent dynamic risk measures. 

Now we are ready to consider the time consistency of the risk measure in our fleet 

model presented in Section 4.1. The static value of , Rockafellar and Uryasev 

(2000), is obtained by the following system for the confidence level β. In addition, 

 represents the discrete scenarios sampled from the distribution of the stochastic 

processes in the model, S is the number of scenarios, ( ) 1
1v Sβ

−
= ⎡ ⎤−⎣ ⎦ , x is the vector 

of decision variables, zs are positive variables, and L denotes the loss function. 

Solving the following LP model gives the optimal value of , the decision 

variable x*, and . 

, , 1

min min  
S

s
x x s

v z
β β

β β

α α
φ α

=

= + ∑   

s.t. 

βφ

sγ

*βφ

*βα
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( , )   0,  1, 2,...,s s sz L x z s Sβγ α≥ − ≥ =  

It has been shown by Boda and Filar (2006) and Shapiro (2009) that, in general, in a 

dynamic setting the above model for calculating  is not time consistent. For this 

reason, we present a dynamic risk measure of , denoted by , equation (4.16) 

(a), which is the value of at each node , and we show it is time consistent. 

Our approach is different from Shapiro (2011), equation (4.16) (b), where the 

concept of cost-to-go functions was used to satisfy the time consistency principle, as 

we provide a recursive formulation of the CVaR for a scenario tree, explicitly 

computing the CVaR of the parent node as a function of the CVaRs and expected 

conditional expectations of the extreme cost of the respective children nodes. It also 

differs from Boda and Filar (2006), in which the target-percentile approach was 

applied for to follow the time consistency principle. 

For a better grasp of constraints (4.16) (a, b), we have represented a numerical 

example as follows. In addition, in the context of the overall optimization problem 

we can define the risk measures in (4.16) (a, b) as: 

( , ) ( , )

1 1( )
(1 )n

n n m m
n m n mt t

Min z
S Sβ

β β

α ψ ψ

φ α φ
β

= + +
− ∑ ∑                                                   (4.19) 

( , )

1 ( )
(1 )n

n n m
n mt

Min v
Sβ

β β

α ψ

φ α
β

= +
− ∑                                                                    (4.20) 

We assume a three stage scenario tree that has four branches at each stage. We 

consider level of β equals 50%. The losses at the final nodes are represented in 

Figure 4.3. The losses at stage 2 are L2=0, L3=10, L4=20, and L5=80. Moreover, all 

βφ

βφ n
βφ

βφ ,t nn∈Ω
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the values of CVaRs at the final nodes are zero. We use equations (4.14)-(4.15), and 

(4.19)-(4.20) for calculation of CVaR at different nodes. 

 

 

Figure 4.3: A three stage scenario tree with St= 4 at each stage. 

By using equation (4.19), first we obtain the RECVaRs at stage 2, which are the 

nodes 2, 3, 4, and 5, i.e, 2
βφ , 3

βφ , 4
βφ , and 5

βφ . 

2

2

2 2 2 2 2 2

2 2

1 [ [(0 ) (0 ) (0 ) (0 ) ]]
4(1 0.5)

 [ 2(0 ) ]

Min
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β β β β β β
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α

φ α α α α α

α α

+ + + +
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= + − + − + − + −
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= + −
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Then by minimizing 2
βφ  we have: 2

βφ =0, and 2
βα =0. Next we calculate 3

βφ . 

3

3

3 3 3 3 3 3

3 3 3

1 [ [(0 ) (0 ) (0 ) (10 ) ]]
4(1 0.5)

1 [ 1.5(0 ) (10 ) ]
2

Min

Min

β

β

β β β β β β

α

β β β

α

φ α α α α α

α α α

+ + + +

+ +

= + − + − + − + −
−

= + − + −
 

If we minimize 3
βφ  we have: 3

βφ =5, and 3
βα =0. Next we calculate 4

βφ . 

4

4

4 4 4 4 4 4

4 4 4 4

1 [ [(0 ) (0 ) (10 ) (20 ) ]]
4(1 0.5)

1 1 [ (0 ) (10 ) (20 ) ]
2 2

Min
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β

β

β β β β β β

α

β β β β

α

φ α α α α α

α α α α

+ + + +

+ + +

= + − + − + − + −
−

= + − + − + −
 

Then after minimizing 4
βφ  we have: 4

βφ =15, and 40 10βα≤ ≤ . Next we calculate 5
βφ . 

5

5

5 5 5 5 5 4

5 5 5 5

1 [ [(0 ) (0 ) (80 ) (100 ) ]]
4(1 0.5)

1 1 [ (0 ) (80 ) (100 ) ]
2 2

Min
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β

β

β β β β β β

α

β β β β

α

φ α α α α α

α α α α

+ + + +

+ + +

= + − + − + − + −
−

= + − + − + −
 

Finally, by minimizing 5
βφ  we have: 5

βφ =90, and 50 80βα≤ ≤ . Next, we calculate the 

CVaR at the root node i.e., 1
βφ . 

1
1 1 1 1 1 1

1 [ [(0 ) (10 ) (20 ) (80 ) ]
4(1 0.5)

1 [0 5 15 90]]
4

Min
β

β β β β β β

α
φ α α α α α+ + + += + − + − + − + −

−

+ + + +
                          

1
1 1 1 1 1

1 1 1 1 [ (0 ) (10 ) (20 ) (80 ) 27.5]
2 2 2 2

Min
β

β β β β β

α
α α α α α+ + + += + − + − + − + − +     (4.21)                         

We have represented the equation (4.21) in Figure 4.4. As seen from Figure 4.4, the 

minimum values of 1
βφ , and 1

βα  are 77.5 and 10, respectively.  
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Figure 4.4: Illustration of equation (4.21), with β level of 50% and St= 4  

Next, we consider equation (4.20). This formula is adapted from Shapiro (2011). He 

has not considered the value of CVaRs at the child nodes. Indeed, he has used the 

concept of cost-to-go functions in the time consistent definition of CVaR. So, we 

proceed by calculation of Qm, using equation (4.13), at the nodes 2, 3, 4, and 5. 

Obviously the value of Qm at the final nodes is zero.  

2 2

3 3

4 4

5 5

1 (0 0 0 0) 0
4
1 (0 0 0 10) 12.5
4
1 (0 0 0 10) 27.5
4
1 (20 40 80 100) 140
4

Q L

Q L

Q L

Q L

= + + + + =

= + + + + =

= + + + + =

= + + + + =

 

Now, we proceed for calculation of CVaR at the root node using equation (4.20). 
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1
1 1 1 1 1 1

1 [ [(0 ) (12.5 ) (27.5 ) (140 ) ]]
4(1 0.5)

Min
β

β β β β β β

α
φ α α α α α+ + + += + − + − + − + −

−
 

(4.22)                      

We have represented the equation (4.22) in Figure 4.5. As seen from Figure 4.5, the 

minimum values of 1
βφ , and 1

βα  are 83.75 and 12.5, respectively. 

 

 

Figure 4.5: Illustration of equation (4.22), with β level of 50% and St= 4  

In order to understand better the dynamic formulation of CVaR in (4.20), adapted 

from Shapiro (2011), we represent a different numerical example and we compare 

the results with RECVaR in equation (4.19). We have changed the losses at the final 

nodes with higher dispersion in the previous example shown by Figure 4.6. But, the 

expected losses at the final nodes are the same in Figure 4.3.  
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Figure 4.6: A three stage scenario tree with St= 4 at each stage with different losses 

at final nodes 

The new CVaRs at stage 2, which are the nodes 2, 3, 4, and 5, i.e, 2
βφ , 3

βφ , 4
βφ , and 

5
βφ  are 0, 4.5, 15, and 120, respectively. So, we have: 

By using equation (4.19): 

1
1 1 1 1 1 1

1 [ [(0 ) (10 ) (20 ) (80 ) ]
4(1 0.5)

1 [0 4.5 15 120]]
4

Min
β

β β β β β β

α
φ α α α α α+ + + += + − + − + − + −

−

+ + + +
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If we minimize 1
βφ , we obtain 1

βφ =84.875 and 1
βα =10. 

For the equation (4.20), we proceed by calculation of Qm, using equation (4.13), at 

nodes 2, 3, 4, and 5, with new losses at the final nodes in Figure 4.6. 

2 2

3 3

4 4

5 5

1 (0 0 0 0) 0
4
1 (0 1 4 5) 12.5
4
1 (0 0 0 30) 27.5
4
1 (0 0 60 180) 140
4

Q L

Q L

Q L

Q L

= + + + + =

= + + + + =

= + + + + =
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By using equation (4.20): 

1
1 1 1 1 1 1

1 [ [(0 ) (12.5 ) (27.5 ) (140 ) ]]
4(1 0.5)

Min
β

β β β β β β

α
φ α α α α α+ + + += + − + − + − + −

−
 

If we minimize 1
βφ , we obtain 1

βφ =83.75 and 1
βα =12.5. 

Because the losses at the final nodes have higher dispersion, the CVaR at the root 

node using equation (4.19) is higher than previous case. But, using (4.20) gives us 

the same result as before despite the fact that the CVaRs in the middle nodes i.e., 2
βφ ,

3
βφ , 4

βφ , and 5
βφ  have been changed. So, using Shapiro (2011) formulation for time 

consistent version of CVaR does not consider the impact of risk at the child nodes. 

As a result, this is the main critique of the time consistent formulation of CVaR 

suggested by Shapiro (2011).  

So, we can conclude that using different dynamic risk measures in which both of 

them are time consistent by construction, we have different results. Now, the 

question is which one we should use?  The answer is the one which is also coherent. 
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We have already defined the properties of a coherent risk measure in Chapter 2 

through equations (2.32) to (2.34) which are Positive Homogeneity, Translation 

Invariance, and convexity (Artzner et al., 1999). In the next section we consider the 

coherency property of the two defined risk measures and the effect of clustering on 

the CVaR. 

 

4.3 Analyzing the Main Properties of the Model 

First, we prove that equation (4.19) is a coherent risk measure. Indeed, we want 

show that the dynamic risk measure n
βφ  in (4.19) satisfies all properties of a coherent 

risk measure.  

Proposition 4.1: The dynamic recursive risk measure in (4.19) is coherent. 

Proof: First, we consider the Positive Homogeneity property. By using (4.19),  
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            (4.23)                          

In (4.23), mmL is the loss function at child of child m. Because VaR has Positive 

Homogeneity property we can write (4.23) as: 
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and it follows : 

( ) ( )n nhL h Lβ βφ φ=  

Next, for proving Translation Invariance property we have: 

( , )
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(4.25)                                        

Because VaR has Translation Invariance property we can write (4.25) as: 
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             (4.26)                           

And it follows: 

( ) ( ) 2n nL h L hβ βφ φ+ = +  

And if we consider until the last stage n, we have: 

( ) ( )n nL h L nhβ βφ φ+ = +                                                                                    (4.27) 

 In (4.27), we can say that by adding h through the stages (time periods), the risk will 

be higher. Indeed, it increases uncertainty about the future. We can call it time-

adjusted Translation Invariance property. So, the equation in (4.19) satisfies 

Translation Invariance property. 
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 Next, for proving convexity property, we use discrete static formulation of CVaR, 

(Rockafellar and Uryasev, 2000), in (4.28).                                                     

 

1(X ) [X ]
1i

i i i iMin E
β

β β β

α
φ α α

β
+⎡ ⎤

= + −⎢ ⎥−⎣ ⎦
                                 (4.28)                        

Let us (x) [ ]f x α += − . Because, f(x) is a convex function we use it for proving the 

convexity of CVaR in (4.28) and we can write its definition by: 

1 2 1 2 1 2, [ , ],  [0,1],  ( (1 ) ) ( ) (1 ) ( )x x a b f x x f x f xλ λ λ λ λ∀ ∈ ∃ ∈ + − ≤ + −   

By replacing the [ ]x α +−  instead of f(x) we have: 

1 2 1 2[ (1 ) ] [ ] (1 )[ ]x x x xλ λ α λ α λ α+ + ++ − − ≤ − + − −                                             (4.29)                          

We can use equation in (4.29) for proving the convexity of discrete static 

formulation of CVaR, (Rockafellar and Uryasev, 2000), in (4.28). 

1 2

1 2

1 2 1 2 1 2
(1 )

( (1 ) )

1(1 ) [ (1 ) (1 ) ]
1

X X

Min E X X
β β

β

β β β β

λα λ α

φ λ λ

λα λ α λ λ λα λ α
β

+

+ −

+ − =

⎡ ⎤
+ − + + − − − −⎢ ⎥−⎣ ⎦

      (4.30) 

By using property of convexity of f(x) in (4.29) we have: 

1 2 1 2 1 2
1(1 ) [ (1 ) (1 ) ]

1
E X Xβ β β βλα λ α λ λ λα λ α

β
++ − + + − − − −

−
          

1 2 1 1 2 2
1(1 ) [ ] [ ]

1 1
E X E Xβ β β βλ λλα λ α α α

β β
+ +−

≤ + − + − + −
− −

                                (4.31)                         

 And by sorting the terms in (4.31) we have: 
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1 2 1 1 2 2
1(1 ) [ ] [ ]

1 1
E X E Xβ β β βλ λλα λ α α α

β β
+ +−

+ − + − + −
− −

 

1 1 1 2 2 2
1 1( [ ] ) (1 )( [ ] )

1 1
E X E Xβ β β βλ α α λ α α

β β
+ +≤ + − + − + −

− −
 

And finally, by using definition of static CVaR in equation (4.28) we have: 

1 1 1 2 2 2
1 1( [ ] ) (1 )( [ ] )

1 1
E X E Xβ β β βλ α α λ α α

β β
+ ++ − + − + −

− −
 

1 2( ) (1 ) ( )X Xβ βλφ λ φ≤ + −                                                                               (4.32)                             

Equation (4.32) clearly shows that CVaR satisfies convexity property. As a result, 

the static part in equation (4.19) is coherent. Now, for the dynamic part, 

( , ) ( , )

1( )m m
n m n mt

E
Sψ ψ

φ φ=∑ ∑ , we can say that, it is the definition of static CVaR at child 

node m. Because, we have proved already the static CVaR in parent node n convex, 

we can conclude that static CVaR at child m, inherits the convexity from its parent 

node. As a result, the equation in the dynamic part is also convex and the summation 

of two convex functions is also convex.                               ■ 

Next, we consider the coherency property of the dynamic risk measure in equation 

(4.20). 

Proposition 4.2: The dynamic recursive risk measure in (4.20) is coherent. 

Proof: First, we consider the Positive Homogeneity property. By using (4.20), 

( , )

1( ) ( ) ( ( ) ( ))
(1 )n

n n m m n
n mt

L Min L Q L L
Sβ

β β β

α ψ

φ α α
β

+⎡ ⎤
= + −⎢ ⎥−⎣ ⎦

∑ , we have: 
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( , )

1( ) ( ) ( ( ) ( ))
(1 )n

n n m m n
n mt

hL Min hL Q hL hL
Sβ

β β β

α ψ

φ α α
β

+⎡ ⎤
= + −⎢ ⎥−⎣ ⎦

∑           

And using the definition of mQ  in (4.13), 

( , ) ( , )

1 1( ) ( ) ( )
(1 )n

n m mm m n
n m n mt t

Min hL hL Q hL hL
S Sβ

β β

α ψ ψ

α α
β

+⎡ ⎤⎡ ⎤
⎢ ⎥= + + −⎢ ⎥−⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑      (4.33)                  

In (4.33), mmQ  is the expected cost function at child node of child m. Because VaR 

has Positive Homogeneity property we can write (4.33) as: 

( , ) ( , )

1 1( ) ( ) ( )
(1 )n

n m mm m n
n m n mt t

hMin L L Q L L
S Sβ

β β

α ψ ψ

α α
β

+⎡ ⎤⎡ ⎤
⎢ ⎥= + + −⎢ ⎥−⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑                   (4.34)                           

And it follows: 

( ) ( )n nhL h Lβ βφ φ=  

 Next, for proving Translation Invariance property we have: 

( , )

1( ) ( ) ( ( ) ( ))
(1 )n

n n m m n
n mt

L h Min L h Q L h L h
Sβ

β β β

α ψ

φ α α
β

+⎡ ⎤
+ = + + + − +⎢ ⎥−⎣ ⎦

∑          

And using definition of mQ  in (4.13), 

( , ) ( , )

1 1( ) ( ) ( )
(1 )n

n m mm m n
n m n mt t

Min L h L h Q L h L h
S Sβ

β β

α ψ ψ

α α
β

+⎡ ⎤⎡ ⎤
⎢ ⎥= + + + + + − +⎢ ⎥−⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑    

(4.35)                   

Because VaR has Translation Invariance property, we can write (4.35) as: 
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( , ) ( , )

1 1( ) ( ) ( )
(1 )n

n m mm m n
n m n mt t

Min L h L h Q L h L h
S Sβ

β β

α ψ ψ

α α
β

+⎡ ⎤⎡ ⎤
⎢ ⎥= + + + + + − −⎢ ⎥−⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑  

And it follows: 

( ) ( ) 2n nL h L hβ βφ φ+ = +  

And if we consider until the last stage n, we have: 

( ) ( )n nL h L nhβ βφ φ+ = +                                                                                      (4.36)                            

Like the proof in Proposition 4.1, we can name equation (4.36) as time-adjusted 

Translation Invariance property. So, the equation in (4.20) satisfies Translation 

Invariance property. 

For the proof of convexity property of equation (4.20), we use the same procedure in 

proposition 4.1. As a result, the risk measure in (4.20) satisfies all properties of a 

coherent risk measure.                                                                  ■  

So far in this Chapter, we have introduced two different risk measures which both of 

them are coherent and time consistent. We have also presented the drawback of risk 

measure adapted from Shapiro (2011) by a numerical example and we have found 

that the dynamic risk measure is not sensitive to the values of the CVaR in the 

middle stages of the scenario tree. So, we prefer to use first recursive risk measure 

which provides more intuitive results for considering the risk minimization in the 

objective function. 

 Next, we consider the effect of clustering on CVaR. In Proposition 4.3, we use the 

static definition of CVaR, Rockafellar and Uryasev (2000), for considering the 

portfolio effect of clustering. 
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Proposition 4.3:. Let ( )kE βφ  represent the expected CVaR for each one of k clusters, 

and βφ denote the CVaR for the combined clusters. Then,  

( )k k
k

E β β βφ φ φ≤ ≤ ∑   .                                                                                           (4.37) 

 

Proof: Let Sk represent the number of observations in cluster k and 

1 2 .... kS S S S+ + + = in which S is the total number of observations in the combined 

set. By using static definition of CVaR, Rockafellar and Uryasev (2000), we have 

 1 ( )
(1 ) j

j S
Min L

Sβ

β β β

α
φ α α

β
+

∈

⎡ ⎤
= + −⎢ ⎥−⎣ ⎦

∑                                                             (4.38)                           

in which Lj represents the loss function associated with observation j which belongs 

to set S.  

The upper limit of βφ in inequality (4.37) can be obtained directly from subadditivity 

property of CVaR (Artzner et al., 1999). Then, for the lower limit  

1 1 2 2

1 2

....( )
...

k k
k

k

S S SE
S S S

β β β
β φ φ φφ + + +
=

+ + +
.  

Hence, By using equation (4.38): 
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from which we derive 

1

1
1( ) ( ) ( ) ... ( )

(1 )
k

k k k j j k
j s j s

E E L L
S

β β β βφ α α α
β

+ +

∈ ∈

⎡ ⎤
= + − + + −⎢ ⎥− ⎣ ⎦

∑ ∑ .                           (4.39)       

                        

Now, we consider two separate cases: (a) ,  kk β βα α∀ = , which means that, with 

clustering the decisions are the same in all the clusters and that the VaR doses not 

change. As a result, the k
βα  for all the clusters is equal to the βα  of the combined 

set. Then equation (4.39) can be represented as 

 1( ) ( ) ( )
(1 )k j k k

j S
E L E

S
β β β β βφ α α φ φ

β
+

∈

= + − → =
− ∑ .  

(b) ,  kk β βα α∀ ≠ , in this case, by clustering we gain more degrees of freedom; 

therefore, by optimality the loss (cost) at every observation, in each cluster, is less or 

equal to the cost in the combined cluster. Therefore, k
βα , in each cluster, is less than 

or equal to the βα in the combined cluster and, consequently, the expected value of 

the CVaR of the clusters is less than CVaR for the combined set. Indeed, if we 

compare equation (4.38) with (4.39), each term in (4.39) is less than the 

corresponding term in (4.38). As a result, ( )kE β βφ φ< . By taking into account both 

cases of (a) and (b) the inequality (4.37) is proved.      ■ 
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4.4 A Case Study on Sustainable Fleet Replacement 

4.4.1 Definition of the Parameters 

We use the historical data for fuel prices from Jan. 2000 to Dec. 2012. As can be 

seen from Table 4.2, when we consider the average correlation coefficient in each 

year between fuel prices from Jan. 2000 to Dec. 2012, the diesel and petrol prices 

have a very high correlation coefficient of 0.876 but a negative correlation of (-

0.126) and (-0.162) with electricity, respectively (in this thesis, we use electricity and 

electricity charge prices interchangeably). However, the price of electricity is the 

price of each charge for a 22 kwh battery. This result suggests that, in the short-term, 

we can use electric vehicles to hedge the risk of fuel price rises but that petrol and 

diesel vehicles, due to the high correlation, are exposed to the same sources of risk 

and are not very useful for reducing each other’s risk exposure.  

Based on this observation, we can generate the simulated scenarios for fuel prices 

with the above correlation matrix using the expected forecasted prices from 2013 to 

the end of 2020 (Table 4.3). Next, we consider the different approaches for the 

clustering analysis and then use the one most appropriate for our data. 

In this Chapter, the following convention is used to denote different vehicle types 

and engine technologies. Internal combustion engine vehicles, also called 

conventional vehicles, use gasoline or a fossil fuel as the only source of energy. 

Hybrid vehicles have an internal combustion engine but also a battery that can be 

used to power the vehicle wheels. Finally, electric vehicles only have an electric 

engine and no combustion engine. 
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Table 4.2: Correlation matrix for fuel prices from Jan. 2000 to Dec. 2012 in each 

year 

 

 

Table 4.3: Average forecasted fuel prices from 2013 to 2020 

 
 

At each stage (year), we want to have the minimum number of vehicles in the fleet 

system, taking into account that the contract of the vehicles will be retired by the end 

of the fourth year. Moreover, we assume an initial condition of the 2013 fleet system 

consisting of 2369 diesel vehicles with different capacities (small, light, medium), 

which are distributed with a percentage age vector [22%, 40%, 30%, 8%] for the 

corresponding age of the vehicles in years from one to four. All the vehicles are 

assumed to be vans. Obviously, the vehicles with their contract in the fourth year 

will be retired the following year. We also consider four technologies: petrol, hybrid-

petrol, hybrid-diesel, and EVs. We assume that other technologies have different 

capacities (small, light, and medium), such as diesel vans. The CO2 emissions for 

petrol, diesel, hybrid-petrol and hybrid-diesel are 2310, 2680, 1719, and 2177 

(g/litre), respectively. Moreover, the CO2 emissions for EVs are 81 g/km. The 

leasing costs for each capacity and technology are summarised in Table 4.4. 

Petrol Diesel Electricity

Petrol 1 0.876 ‐0.126
Diesel 0.876 1 ‐0.162
Electricity ‐0.126 0.162 1

2013 2014 2015 2016 2017 2018 2019 2020
Petrol 1.338 1.386 1.435 1.483 1.532 1.58 1.628 1.677
Diesel 1.387 1.439 1.49 1.542 1.593 1.645 1.696 1.748
Electricity 2.476 2.581 2.685 2.789 2.894 2.998 3.102 3.206
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Table 4.4:  The leasing costs (£) for vehicles with different capacities and 

technologies 

 

 

For the petrol and hybrid technologies, we use their expected values of fuel 

consumption as a base in each cluster for diesel technology. By multiplying the fuel 

consumption coefficient vector, [1.31, 1, 0.93, 0.8], we obtain the corresponding fuel 

consumption of petrol, diesel, petrol-hybrid, and diesel-hybrid for each cluster, 

respectively. The benchmark is indicated by the number 1 and corresponds to diesel 

technology. For EVs we take into account the forecasted electricity prices shown in 

Table 4.3 for small capacity as a base and by multiplying the ratio of power of 

batteries, [1, 1.18, 1.77], for small, light and medium, respectively, by which we can 

obtain the electricity prices for each cluster in different capacities of EVs. The 

benchmark is the first component of the vector and is shown by 1. Furthermore, for 

the monthly lease cost of batteries for EVs we assume the base price for small 

capacity (22 kw) is £79, and for obtaining the monthly cost of batteries for other 

capacities we multiply by the same ratio vector [1, 1.18, 1.77].  

 

4.4.2 Using Clustering Analysis 

The aim of the clustering analysis is to identify homogenous subgroups of instances 

in a population. For large numbers of observations, hierarchical clustering 

Technology Small (£) Light(£) Medium(£)

Petrol 209 228 266
Diesel 220 240 280

Hybrid-Petrol 299 326 381
Hybrid-Diesel 319 348 406

EVs 381 415 484
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algorithms can be time consuming (e.g., Schonlau, 2004). The computational 

complexity of the three popular agglomerative hierarchical methods (single, 

complete and average linkage) is of the order O(n2), whereas the most popular non-

hierarchical cluster algorithm, K-means (MacQueen, 1967), is only of the order 

O(Kn), where K is the number of clusters and n the number of observations (Hand et 

al., 2001). Therefore, K-means, a non-hierarchical method, is emerging as a popular 

choice in the data mining community. We implement a two‐step clustering algorithm 

that is well‐suited when we address a large dataset, and it combines the abilities of 

hierarchical clustering analysis and K-means simultaneously. A  two-step cluster 

analysis is conducted using the Bayesian Information Criterion to determine the 

number of clusters automatically (Bacher et al., 2004). 

We consider three vehicle types with different capacities. Capacity is an important 

characteristic because, depending on the function, the technicians in the company 

have to carry materials and, thus, have to drive a vehicle with sufficient capacity. For 

instance, power engineers need light vans with enough carrying capacity. We 

consider small vans as weighing 300 kg and that light vans weigh 500 kg and have a 

greater carrying capacity. Medium vans can be used on any type of function, but 

there are only a few because they are far more expensive to buy and maintain. We 

perform cluster analysis for each type of vehicle. The total number of vans is 2369, 

comprising 1137 (48%) small, 1077 (45%) light, and 155 (7%) medium vans. 

The result of clustering analysis for the small vans is presented in Table 4.5. The 

clusters are sorted by an increasing order of mileage driven. The high mileage driven 

vehicles for small vans are distributed among cluster 4 with normal fuel efficiency. 

In this cluster, we have 324 vehicles (28%). There are two other clusters, clusters 2 
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and 3, which are below the average mileage driven (1011 miles/month), which have 

similar mileages, but have different fuel consumptions. Finally, in cluster 1 we have 

the lowest mileage vehicles (581 miles/month), with less efficient fuel consumption: 

the vehicles in this group are underutilised and are of great concern for the fleet 

management. 

 

Table 4.5: Cluster analysis for mileage and fuel consumption data for small vans 

 

For the light vans (Table 4.6), the vehicles that can be classified as running a higher 

mileage are distributed in two clusters, 4 and 5, with different fuel efficiencies. In 

cluster 5 we have 142 vehicles (13%), which have a mileage of 1924.2 miles/month 

and have a fuel consumption of 5.75 litres/100 km. In contrast, in cluster 4 we have 

189 vehicles (18%) with a mileage of 1376 miles/month and a fuel consumption of 

6.63 litres/100 km. In cluster 3, we have the largest portion of the light vans, 324 

vehicles (30%), which can be classified as average mileage vehicles, though with an 

efficient fuel consumption of 5.38 litres/100 km. We also have two clusters for lower 

mileage vehicles, clusters 1 and 2, which are very close to each other in terms of 

mileage driven but are not the same in terms of fuel consumption.  

For the medium vans (Table 4.7), the underutilised segment (i.e., cluster 1 of 

medium vans) has a percentage of 27% of the vehicles, with the least amount of 

Mean S.D. Mean S.D. Number % 
1 581.4 267.8 6.3 0.4 135 12%
2 789.2 254.9 5.3 0.3 381 34%
3 845.6 255.7 4.5 0.4 297 26%
4 1605.0 313.6 5.0 0.4 324 28%

Combined 1011.7 470.5 5.1 0.7 1137 100%

Small 
Vans

Types of 
vehicles

Cluster

Monthly Mileage
(miles)

Fuel Consumption 
(litres/100km) Vehicles
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mileage driven in a month equal to 735.39 miles and the fuel consumption equal to 

10.37 litres/100 km. In addition, the largest portion of the medium vans belongs to 

normal mileage driven vehicles, cluster 2, with an average of 964.73 miles/month 

and a very efficient fuel consumption of 8.01 litres/100 km. Finally, the third 

segment for high mileage driven vehicles has a contribution of 29% to the whole 

number of medium vans, with an average mileage of 1617.97 miles/month and a 

close to normal fuel consumption of 9.39 litres/100 km. 

 

Table 4.6: Cluster analysis for mileage and fuel consumption data for light vans 

 

 

Table 4.7: Cluster analysis for mileage and fuel consumption data for medium vans 

 

 

 

Mean S.D. Mean S.D. Number %
1 635.7 241.7 7.1 0.5 130 12%
2 721.0 206.1 6.0 0.3 292 27%
3 1110.4 253.8 5.4 0.5 324 30%
4 1376.8 233.7 6.6 0.5 189 18%
5 1924.2 313.0 5.8 0.4 142 13%

Combined 1101.0 477.9 6.0 0.7 1077 100%

Light 
Vans

Types of 
vehicles

Cluster

Monthly Mileage
(miles)

Fuel Consumption 
(litres/100km) Vehicles

Mean S.D. Mean S.D. Number %
1 735.4 245.3 10.4 1.1 42 27%
2 964.7 193.0 8.0 1.2 68 44%
3 1618.0 297.2 9.4 1.3 45 29%

Combined 1092.2 424.4 9.1 1.6 155 100%

Medium 
Vans

Types of 
vehicles

Cluster

Monthly Mileage
(miles)

Fuel Consumption 
(litres/100km) Vehicles
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4.5 Solving the Fleet Replacement Problem  

Given these constraints, we want to minimise the weighted average of total expected 

costs and CVaR during the planning horizon. Our goal is to determine the optimal 

policy from 2014 to 2017. Note that in order to calculate this policy we need to 

continue the calculation for the stochastic variables from 2017 to the end of 2020 

(until the end of life of the vehicles leased in the period of analysis). 

Moreover, at each node we have generated a random vector of normal distribution 

for fuel prices, monthly mileage driven, and fuel consumption. For the means and 

standard deviations of corresponding distributions, we have used the information in 

Tables 4.5, 4.6, and 4.7. Moreover, we can use a normal distribution for fuel 

consumption and mileage driven in each cluster. For simulating the CO2 prices, we 

have assumed a uniform distribution between £5/ton and £20/ton. 

The number of vehicles at each node follows a normal distribution with the mean 

equal to the size of each cluster and a standard deviation equal to 5% of the 

corresponding size of the cluster. The reason for this assumption is twofold: first, the 

number of vehicles (demand) in each year is a stochastic parameter; second, the 

distribution of leased vehicles needed in each year based on the real data follows a 

normal distribution in which the variation of vehicles is 5% of the total fleet size.  

To consider the effect of the branching level (St) corresponding to each parent node 

at each stage t, we use fives cases in which we have different branching levels in 

early stages focusing on the first stage. This is because the uncertainties by closing to 

the final stages become lower due to a greater realisation of stochastic processes. In 

the last row of Table 4.8, we show the percentage of difference between the 

corresponding CVaR, in each case, and the previous one. For example, the 
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percentage of difference between the CVaR in case 2 and in case 1 is 1.47%. By 

increasing the number of scenarios, the difference is reduced and the CVaR 

converges. Thus, we can conclude that we have the convergence of CVaR for 

approximately 24000 scenarios with a tolerance of 0.1%. Based on this observation, 

we run the simulations based on the pattern in case number 4 and we can be 

confident about the accuracy of the results.  

 

Table 4.8: Effect of branching (St) on the convergence of CVaR. 

Case/year 1 2 3 4 5 

S1 10 15 20 30 40 
S2 10 10 10 10 10 
S3 5 5 5 5 5 
S4 3 2 2 2 2 
S5 2 2 2 2 2 
S6 2 2 2 2 2 
S7 2 2 2 2 2 
S8 2 2 2 2 2 

# nodes 4711 23416 31221 46831 62441 
# scenarios 2400 12000 16000 24000 32000 

CVaR difference(%) - 1.47% 0.43% 0.37% 0.1% 

 

We have considered different values of ω (The parameter that models the trade-off 

between risk and expected cost). Moreover, to obtain the optimal number of vehicles 

at each cluster we take into account the corresponding number of vehicles in each 

type of the vehicles, from Tables 4.4, 4.5, and 4.6. Next, we proceed by considering 

each type of vehicle separately. 
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4.5.1 Result of Optimal Policies for Technologies in Different Types of Vehicles 

The results for each vehicle type are shown in Table 4.9. We considered three values 

of ω equal to 0, 0.5, and 1. Moreover, we calculated the average number of new 

leased vehicles at different nodes in each year (stage). We denote different 

technologies by D, P, H-P, H-D, and E for Diesel, Petrol, Hybrid-Petrol, Hybrid-

Diesel, and Electric, respectively. Based on different risk preference parameter (ω) 

values, the results indicate that we should lease a different number of vehicles at 

different stages. For example, as seen in Table 4.9 (a), which shows the results for 

small vans, in cluster 1, for a ω equal to 0.5, we should lease 11, 38, 4, and 0 diesel 

vehicles; 0, 2, 50, and 30 petrol vehicles at the beginning of each year, between 2014 

and 2017, respectively. Indeed, petrol vehicles have a high percentage in lower 

mileage clusters when ω equal to 0.5. For example in cluster 1 of small vans for ω 

equal to 0.5, we should lease 61% of the whole vehicles with petrol vehicles. In 

addition, for clusters 2 and 3 at the beginning of 2017 for ω equal to 0, we should 

lease also hybrid-petrol and hybrid-diesel with a small numbers. For cluster 4, which 

has vehicles with higher mileage profiles, for ω equal to 0 and 0.5, we should 

consider leasing hybrid-petrol and hybrid-diesel and electric vehicles with a small 

penetration ratio. For example, for cluster 4 of small vans during 2014 to 2017 for ω 

equal to 0, the percentage of new leased diesel, petrol, hybrid-petrol, hybrid-diesel, 

and EVs are 89%, 4%., 3%, 2%, and 2% , respectively. 

We now analyse the results for light vans. As we have seen in Section 4.3 for light 

vans there are five clusters of which the first two clusters are considered for lower 

mileage vehicles, with different fuel efficiencies, and the third cluster is for normal 

mileage vehicles. Moreover, the last two clusters, i.e., clusters 4 and 5, include 

higher mileage vehicles with different fuel consumptions. Given different values of 



www.manaraa.com

138 

ω equal to 0, 0.5, and 1, the optimal choice of technology, and the number of new 

leased vehicles, Table 4.9 (b), for all clusters are obtained. In light vans we have also 

a combination of different technologies with different penetration ratios in different 

clusters. But, in higher mileage clusters the penetration ratio of EVs is higher. For 

example, in cluster 5 of light vans during 2014 to 2107, for ω equal to 0, the 

penetration ratio of diesel, petrol, hybrid-petrol, hybrid-diesel, and EVs are 81%, 

1%, 2%, 3%, and 13%. However, by increasing the value of ω, this ratio decreases to 

4% and 2% for a ω equal to 0.5 and 1 for EVs, respectively. 

Next, we consider the case study results for medium vans, which have the smallest 

portion (7%) of the total numbers of vehicles due to their weight, cost and special 

tasks, which are assigned to them for specific cases. As we discussed before, three 

clusters for these vehicle types have been identified. The model results for the 

clusters are presented in Table 4.9 (c). Given different values of ω, the optimal 

choice of technologies for clusters 1 and 2 is Diesel, Petrol, Hybrid-Petrol, and 

Hybrid-Diesel. For the third cluster, which is considered for high mileage vehicles, 

the optimal choice also includes EVs. Due to higher investment costs compared with 

small and light vans, the electric technology is the optimal choice for cluster 3 of 

medium vans, with high penetration ratios of 56%, 24%, and 11%, for a ω equal to 0, 

0.5, and 1, respectively.  
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Table 4.9: Optimal number of vehicles per cluster. For each cluster, and ω equal to 
0, 0.5 and 1, we report the technologies leased and the number of vehicles per 
technology.   
 

 

 

 

 

 

ω 0 0.5 1 0 0.5 1
2014 34 11, 0 11 80, 0, 0, 0 30, 0 30

Year 2015 44 38, 2 41 125, 0, 0, 0 115, 0 115
2016 44 4, 50 54 101, 27, 0, 0 14, 138 152
2017 13 0, 30 29 26, 16, 3, 3 3, 81 84

Tech. D D, P D D, P, HP, HD D, P D

ω 0 0.5 1 0 0.5 1
2014 60, 0, 0, 0 23, 1 24 73, 0, 1, 0, 0 25, 1, 0, 0, 0 26

Year 2015 94, 0, 0, 0 83, 6 89 97, 0, 0, 0, 0 99, 0, 0, 0, 0 97
2016 78, 26, 0, 0 8, 111 119 98, 8, 4, 3, 2 84, 42, 1, 1, 1 130
2017 20, 14, 3, 2 2, 63 65 20, 6, 4, 4, 4 22, 44, 1, 2, 1 71

Tech. D, P, HP, HD D, P D D, P, HP, HD, E D, P, HP, HD, E D

Cluster 1 Cluster 2

Cluster 3 Cluster 4

(a) Small Vans

ω 0 0.5 1 0 0.5 1 0 0.5 1
2014 30 10, 0 10 55, 0, 0, 0 23, 0 23 69, 0, 0, 0 25, 0 26

Year 2015 43 39, 0 39 96, 0, 0, 0 88, 0 88 99, 0, 0, 0 99, 0 97

2016 44 6, 46 52 82, 21, 0, 0 9, 108 117 100, 15, 1, 1 24, 105 130

2017 13 0, 29 29 21, 13, 2, 2 0, 64 64 23, 11, 3, 2 2, 69 71
Tech. D D, P D D, P, HP, HD D, P D D, P, HP, HD D, P D

ω 0 0.5 1 0 0.5 1

2014 40, 0, 0, 0, 0 15, 0, 0, 0, 0 15 30, 0, 0, 0, 0 10, 0, 0 11, 0

Year 2015 58, 0, 0, 0, 0 57, 0, 0, 0, 0 57 41, 0, 0, 0, 3 44, 0, 0 43, 0

2016 61, 3, 1, 2, 2 57, 17, 1, 1, 0 76 36, 1, 1, 2, 10 37, 16, 4 56, 1

2017 13, 3, 2, 2, 3 14, 24, 1, 1, 1 41 8, 1, 2, 2, 5 3, 27, 1 29, 2

Tech. D, P, HP, HD, E D, P, HP, HD, E D D, P, HP, HD, E D, P, E D, E

Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5

(b) Light Vans

ω 0 0.5 1 0 0.5 1 0 0.5 1
2014 10 3, 0 3 16, 0, 0, 0 5 5 2, 0, 0, 10 3, 0, 0, 0, 1 4, 0, 0, 0

Year 2015 14 14, 0 13 18, 1, 0, 0 20 20 5, 0, 0, 6 10, 0, 0, 0, 3 13, 0, 0, 0
2016 14 6, 10 17 20, 4, 0, 0 18, 9 27 7, 1, 1, 6 11, 1, 1, 1, 4 14, 1, 1, 3
2017 4 1, 8 9 5, 2, 1, 1 6, 10 16 2, 1, 1, 3 3, 2, 1, 1, 3 6, 0, 1, 2

Tech. D D, P D D, P, HP, HD D, P D D, HP, HD, E D, P, HP, HD, E D, HP, HD, E

(c) Medium Vans
Cluster 1 Cluster 2 Cluster 3
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4.5.2 Portfolio Effect of Clustering 

In this section we want to test whether clustering decreases risk and (or) expected 

cost. Table 4.10 depicts the results for different capacities of vehicles for combined 

clusters. It can be seen that, for all vehicle types, the portion of diesel technology is 

the highest in comparison with other technologies, for all values of ω. For example, 

for ω equal to 0, the percentage of new leased diesel vehicles from 2014 to 2017, 

with respect to other technologies, is 94%, 96%, and 83% for small, light, and 

medium vans, respectively. These ratios are obtained by dividing the corresponding 

number of diesel vehicles by the total number of vehicles in each type of capacity. 

 

Table 4.10: Optimal number of vehicles and technologies for combined clusters. For 
each cluster, and ω equal to 0, 0.5 and 1, we report the technologies leased and the 
number of vehicles per technology.  
 

 

 

To consider the effect of clustering for each vehicle capacity, as seen in Figures 4.7, 

4.8, and 4.9, we have obtained the values of CVaR and the expected cost per vehicle, 

in the case of combined clusters and different clusters. Because the number of 

vehicles in each cluster is different, and as we have a different expected mileage and 

fuel consumption for each cluster, in order to compare the CVaR values of the 

different clusters we obtain the CVaR per vehicle, in each cluster, for three values of 

ω, by subtracting the CVaR from the expected cost of each cluster, and dividing the 

ω 0 0.5 1 0 0.5 1 0 0.5 1
2014 283, 4, 3, 0 82, 7, 3 92, 0 273, 3, 3, 0 82, 3, 2 87, 0 41, 1, 1, 0, 0 11, 1, 0, 0 12, 0, 0, 0

Year 2015 376, 17, 2, 0 362, 12, 2 321, 20 365, 8, 2, 0 356, 6, 2 318, 5 42, 4, 4, 2, 1 46, 2, 1, 1 47, 0, 0, 0

2016 321, 29, 2, 2 71, 345, 3 428, 26 306, 19, 4, 3 102, 287, 1 417, 14 35, 5, 3, 3, 1 40, 16, 3, 2 56, 4, 1, 1

2017 91, 7, 0, 0 4, 276, 0 233, 17 87, 4, 0, 0 5, 231, 0 226, 10 10, 1, 1, 0, 0 10, 18, 2, 2 29, 3, 1, 1

Tech. D, P, HP, HD D, P, HP D, P D, P, HP, HD D, P, HP D, P D, P, HP, HD, E D, P, HP, HD D, P, HP, HD
Total 1137 1137 1137 1077 1077 1077 155 155 155

Small Vans Light Vans Medium  Vans
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result by the number of vehicles in the cluster. In so doing, the amount of loss (risk) 

for each cluster is normalised, and this value is comparable among clusters. In 

addition, the expected cost analysis is on a per vehicle basis. In Figures 4.7, 4.8, and 

4.9, we present the results in a two dimensional setting with four quadrants with 

different ranges of CVaR and expected cost per vehicle. The first quadrant 

corresponds to the clusters with high CVaR and high expected cost per vehicle. The 

second quadrant includes clusters that have low CVaR and high expected cost per 

vehicle. The third quadrant contains clusters with low CVaR and low expected cost 

per vehicle. Finally, the fourth quadrant represents clusters with high CVaR and low 

expected cost per vehicle. Next, we analyze he common patterns observed in Figures 

4.7, 4.8, and 4.9. 

 

Figure 4.7: Portfolio effect on CVaR and expected cost for small vans 
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Figure 4.8: Portfolio effect on CVaR and expected cost for light Vans 

 

 

Figure 4.9: Portfolio effect on CVaR and expected cost for medium vans 
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For all capacities, and all values of ω, the CVaR decreases when we have clustering. 

For example, for the case of ω equal to 0.5, there is a reduction in CVaR per vehicle 

of £1.16K (30.4%), £1.94K (50.64%), £1.70K (44.44%), and £1.14K (29.73%) for 

clusters 1, 2, 3, and 4 in small vans, respectively. Moreover, as proved in Proposition 

4.3, the amount of CVaR per vehicle for combined cluster is less than the sum of 

CVaR for other clusters (Subadditivity property) and is more than the average of 

CVaR for other clusters for each value of ω. 

In addition, the expected cost per vehicle decreases by clustering, for the different 

vehicle capacities except for high mileage clusters when compared to combined 

cluster. For instance, for the case of ω equal to 0.5, there is a reduction in expected 

cost per vehicle of £3.72K (13.7%), £4.07K (15.2%), and £1.18K (4.33%) for 

clusters 1, 2, and 3 of light vans.  

However, for the high mileage clusters, the expected cost per vehicle increases by 

clustering, for the different vehicle capacities. One reason for this increase is that 

adoption of EVs at high mileage clusters increases the expected cost per vehicle. 

Another reason is that in these clusters, we have a percentage of diesel and petrol 

vehicles and these vehicles are not cost efficient at high mileages. For instance, in 

cluster 4 of small vans, the expected cost per vehicle increases for all values of ω. 

This is the same in clusters 4 and 5 of light vans, and cluster 3 of medium vans. For 

example, for the case of ω equal to 0.5, there are increases of £4.53K (19.45%) in 

cluster 4 of small vans, £4.53K (16.70%) and £7.25K (26.71%) in clusters 4 and 5 of 

light vans, £9.66K (27.52%) in cluster 3 of medium vans, respectively. 
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4.6 Summary 

In this Chapter, we present a general model for using different technologies in the 

fleet replacement decisions of companies, simultaneously taking into account the 

minimisation of both cost and risk.  We have also obtained insightful results 

regarding the importance of risk in fleet management. 

In terms of methodological contribution, we have developed a new formulation of a 

time consistent CVaR in a dynamic setting. Our approach is different from that of 

Shapiro (2011), in which conditional risk mapping was used to satisfy the time 

consistency principle. Our approach is also different from Boda and Filar (2006) in 

which a target-percentile approach was suggested for following the time consistency 

rule. Specifically, we have provided a recursive formula for the calculation of CVaR, 

which at each parent node takes into account the effect of the CVaR of children 

nodes. In addition, we have proved the time consistency and convergence properties 

of our CVaR formulation, and we have analyzed how clustering affects the CVaR, 

proving that the average CVaR of the clusters is always less or equal to the CVaR 

without clustering. 

By considering a real case study, and performing a cluster analysis of vehicles with 

different capacities, based on mileage and fuel consumption as grouping variables, 

the major conclusions are as follows: 

1. For clusters with low mileage (500 miles/month) and average mileage (1000 

miles/month) with fuel efficiencies of all type of vehicles, diesel technology is the 

dominant choice for risk or cost minimisation purposes (ω is equal to 0 or 1). In 

addition, for high mileage clusters (more than 1300 miles/month), diesel 

technology is the dominant choice for all values of ω. However, trading diesel 
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technology for high mileage clusters imposes a significant amount of risk and cost 

to the fleet system. 

2. Petrol technology is an optimal choice for risk and cost minimisation (ω is not 

equal to 0 or 1), in the in low and average mileage driven clusters of different type 

of vehicles. For example, for cluster one of small vans when ω equals to 0.5, we 

should lease 61% of the whole new leased vehicles with petrol vehicles. 

However, in low and average mileage driven clusters, when we have risk or cost 

minimization (ω is equal to 0 or 1), as mentioned before diesel technology is the 

dominant optimal choice. 

3. The Hybrid-petrol and Hybrid-diesel technologies, which were also considered in 

the model, cannot compete with diesel technology in terms cost efficiency 

because of the high leasing/ownership costs. Their penetration ratio in different 

type of vehicles changes between 1% to 3%. If their leasing costs due to mass 

production are reduced to the level of diesel technology, they can be replaced for 

clusters with low and normal mileage profiles instead of diesel vehicles. 

4. EVs generally contribute to high mileage clusters of different capacities of the 

vehicles. For example, for cluster 5 of light vans (which is considered for high 

mileage light vans) with ω equal to 0, the penetration ratio of EVs is 13%. 

However, by increasing the value of ω, this ratio will decrease to 4% and 2% for a 

ω equal to 0.5 and 1, respectively. In addition, this ratio for cluster 3 of medium 

vans increases to 56%, 24%, and 11% for a ω equal to 0, 0.5, and 1, respectively. 

Finally, for small vans EVs only contribute to cluster 4 with a penetration ratio of 

2% for a ω equal to 0. 

5. For all values for ω and all capacities, the risk per vehicle is reduced by clustering 

when compared to combined clusters. However, the expected cost per vehicle is 
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not reduced by clustering for clusters with high mileage profiles. This is because 

of the adoption of EVs at high mileage clusters which increases the expected cost 

per vehicle. In addition, we have a percentage of diesel and petrol vehicles, and 

these vehicles are not cost efficient at high mileages. 

6. Finally, we found both analytically and numerically, that the CVaR per vehicle 

for the combined cluster is more than the average of CVaR for the separate 

clusters, and is less than the sum of CVaRs.  

In the next Chapter, we extend our work to consider the flexibility for leasing the 

vehicles using different options for contracts. By doing this, vehicles can be returned 

during leasing period or can be swapped by other technologies by paying the price of 

the options and the penalties. As a result, the fleet replacement model is more 

comprehensive for considering the effect of technological change of EVs and 

evaluating the impact of different uncertainties by using real option theory and 

CVaR. 
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CHAPTER 5 
 

 

FLEXIBLE LEASE CONTRACTS IN 
SUSTAINABLE FLEET REPLACEMENT: A 

REAL-OPTIONS APPROACH 

 

Au chapitre 5, nous prolongeons le travail détaillé au chapitre 4 en prenant en 

considération les contrats de location souples. Dans un tel cadre, les décisions sont 

actualisées à chaque période avec différentes options. 

Bien sûr, dans un tel contexte, nous disposons d’une grande souplesse en utilisant 

des contrats assortis de différentes options. Tout d’abord, nous procédons à une 

revue de la littérature en ayant recours à des options réelles. Puis nous appliquons 

notre modèle examiné au chapitre 4, avec utilisation de la CVaR et de différents 

contrats à option, à savoir le contrat de base (le contrat sans option), le véhicule 

rendu et l’échange. Dans ce chapitre, nous prenons également en considération, pour 

des politiques optimales de remplacement, le développement technologique des 

batteries, attendu à l’horizon qui est celui du plan. Enfin, nous présentons des 

résultats analytiques afin d’expliquer comment les contrats à option affectent la 

CVaR et le coût total attendu que nous appliquons dans l’analyse d’une étude de cas. 
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The leasing market is an important topic that should be considered for fleet 

replacement decisions. Leasing companies and (large) firms negotiate and bargain 

about a lease agreement and its conditions. Then, after negotiating with different 

leasing companies a firm decides which lease company wins the contract. At present 

a commercial lease contract usually has a standard duration of four years in the case 

of company we have analyzed. However, there are still many developments expected 

with EVs and improved models that will become available in the coming years (e.g. 

improvement of batteries). Therefore, firms might rather wait and obtain a better 

model for EVs within few years. On the other hand, for other technologies like diesel 

and petrol, due to governmental interventions, increasing fossil fuel prices, and other 

issues, they may not be economically efficient in the future. So, one could also 

negotiate shorter lease contracts for EVs. However, this causes a higher depreciation 

and, therefore, higher monthly lease costs for EVs which makes them less efficient. 

In contrast, for diesel and petrol cars if there is a large increase in fossil fuels prices, 

because of their high running costs, maybe it will be preferable to choose contacts 

with two years period. Another point that should be mentioned about diesel and 

petrol vehicles is that, because of their mature technologies, there is high bargaining 

power for their lease price for firms even with shorter lease contracts. Now, we want 

to extend the model presented in Chapter four to consider flexibility for leasing 

contracts, taking into account the uncertainties. For example, we can consider a lease 

contract which let us make our decision for returning, or to swap the vehicle with the 

specific technology, at the beginning of each year, during the four years planning 

horizon, depending on the realization of the stochastic parameters, such as CO2 and 

fuel prices. In order to value different leasing option contracts, we can use real 

option theory, e.g., Myers (1977). 
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The terminology “Real Options” can first be referred to Myers (1977), who analyzed 

investments in real assets as options. Indeed, a real option is a permit with a 

changing value at different time points in order to make business decisions; for 

instance, an option to make a capital investment. In contrast to financial options, a 

real option is not tradable. For example, a firm owner cannot sell the option to 

extend his company to another person, only he can make this decision for his 

company. The term “real options” is somewhat new, whereas business companies 

have been making capital investment decisions for many years (e.g, Anderson, 

2014).  

In addition, short-term lease contracts are a characteristic of many business 

companies; for example, apartment leasing or service operations that involve with 

expensive facilities for doing special tasks. In lease contracts, lessees require 

services that have a short period in comparison with the life cycle of the equipment 

and may be repeated, possibly at various places, for many times. Lease contracts 

often have options influencing the lease length, especially extension and cancelation. 

We emphasize that the flexibility that we mentioned in the definition of a real option 

may take into account the acquisition of an asset or be related to the use of an asset. 

However, for leasing contracts, the asset produces cash when being leased or used 

for doing the special services; the options in the lease contract influence on this cash 

flow. Options on leasing contracts in different applications have been studied by 

Grenadier (1995) and Trigeorgis (1996). 

In Section 5.1 we go through a broad literature review for real options and its 

different applications, specifically in environmental and sustainability development 

issues, and then in Section 5.2 we develop a model for considering different options 
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for contacts. In Section 5.3 we present the analytical results. In Section 5.4 we 

provide a real case study and then, in Section 5.5 we develop our insights from the 

solved model. In Section 5.6, we extend our analysis by considering the 

technological change of EVs and, finally, in Section 5.7, we conclude the chapter. 

5.1 Literature Review on Real Options 

Real Options theory or Real Options Valuation (ROV) approach is founded on 

similarities between investment opportunists and financial options. A real option is a 

permit, but not an obligation, for doing an investment for a specific cost during or a 

time period. With the ROV methodology, a project is assumed an option for the 

generated cash flows and the optimal investment policies are just the optimal 

exercise rules of the option (e.g., Dyson and Oliveira, 2007). 

Real options have been used widely for capital planning in many applications in 

different industries. Lander and Pinches (1998) categorized these applications in 16 

areas: natural resources, competition and business strategy, production, real estate, 

R&D, public good, mergers and acquisitions, corporate governance, interest rates, 

inventory, labor, venture capital, advertising, legal, hysteretic effect and corporate 

behavior, environmental development and protection. For instance, Oliveira (2010) 

has studied the application of real options in strategic decision making by presenting 

a new formalization of strategic options as finite automata. Specifically, early real 

options literature was mostly found in the oil and gas upstream industry (e.g., 

Brennan and Schwartz, 1985; Paddock and Siegel, 1988). For example, Murphy and 

Oliveira (2010, 2013) have proposed the use of option contracts as instruments to 

manage the US Strategic Petroleum Reserve, as they signal the government 

commitment to act during a disruption, provide more risk-management opportunities 
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to the refinery industry, and compensate some of the costs of maintaining the 

reserve. 

Moreover, in the context of deregulated electricity markets, power companies face 

not only uncertain customer demand but also the volatility of electricity spot and 

forward prices (e.g., Anderson and Xu, 2006). For this reason, Sekar (2005) 

considered investments in three coal-fired power generation technologies by using 

real option assessment, considering CO2 price as the only uncertain variable which 

appeared in the cash flow models of each of the three technologies. Sekar’s approach 

used two elements simultaneously: market-based assessment for evaluation of cash 

flow uncertainty, and dynamic quantitative modelling of uncertainty with Monte-

Carlo simulation. In addition, Laurikka (2006) developed a simulation model using 

real options to assess the option value of Integrated Gasification Combined Cycle 

(IGCC) technology within European emissions trading scheme (EU ETS). The 

model considered three of stochastic variables: the price of electricity, the prices of 

fuel and the price CO2.). Since, our research relates to environmental and 

sustainability development in different industries, we focus on the literature related 

this application of real options. 

Cortazar et al. (1998) developed an application of real options to the assessment of 

environmental investments. Their evaluations showed that companies, in industries 

with high output price fluctuation, would have more tendency to operate at low 

outputs levels (declining the emissions) than to invest in environmental protection 

projects. 

Avadikyan and Llerena (2010) by taking a real options reasoning approach provide a 

more robust justification of companies’ investment decisions on hybrid vehicles 
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(HVs) as a technological strategy in order to be flexible with facing market and 

policy uncertainties. Specifically, they introduce four types of growth options 

strategies on HVs which are: (1) an option to keeping the existing technological 

situation and providing a hedging long strategy for facing with uncertainties; (2) an 

option to limit HV project risks; (3) an option to diversify and (4) a platform with 

inside flexibility option.  

Kleindorfer et al. (2012) have developed the EV adoption decision considering the 

affects of uncertainty in fuel, carbon, and battery prices by using a real option 

approach. They solve a model for optimal EV-Internal combustion vehicles (ICV) 

replacement decisions in a dynamic setting in the fleet system of a company in Postal 

sector in France. In their assumptions there is no flexibility in terms leasing contract 

and they have assumed a six year planning horizon for it. Moreover, they have 

considered four replacement policies which are (1) ICV-only policy; (2) static 

policy; (3) Dynamic policy; and (4) Perfect information policy.  

To sum up, we understand that there is also a gap in the literature which is to view 

the problem of sustainable fleet replacement, taking into account the inherent 

flexibility that can exist for leasing contracts due to existence of uncertainties, by 

using real options analysis. Specifically, our approach is different with Kleindorfer et 

al. (2012), in terms of stochastic parameters in the model and different options for 

the leasing contracts. In this Chapter we extend the problem that we considered in 

Chapter 4 taking into account the uncertainties that exist in the real situation. These 

uncertainties are CO2 prices, fuel prices, mileage driven by a vehicle and fuel 

consumption. We consider a lease contract which allows us to have three options for 

leasing the vehicles. The first choice is the base contract that has no option during 



www.manaraa.com

153 

four years. However, if the car is returned the penalty cost is very high. The second 

alternative is to lease the vehicle with option to return the vehicle by paying a small 

penalty. Finally, the third choice is to lease the vehicle with the swap option in which 

we pay a small penalty for returning the vehicle and choosing other vehicle. In order 

to value the aforementioned leasing contracts, we can use real option theory and then 

we develop our dynamic model in our previous research for considering the optimal 

number of cars in the leasing period. 

5.2 A Multi Stage Stochastic Model with Flexible Lease Contracts  

In this part we introduce a multi-stage stochastic programming model in order to 

obtain the optimal number of the vehicles to be leased, taking into account the 

constraints that exist in order to minimize a cost function which considers expected 

cost, and CVaR, during the planning horizon.  

 

Figure 5.1: The node-based tree for a generic lease contact with options to choose 

the base contract, return early, and to swap. 
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As shown in Figure 5.1, we consider three type contracts including different options. 

The first choice is the base contract that has no option during four years. However, if 

the car is returned the penalty cost is very high. The second one is to lease the 

vehicle with option to return the vehicle by paying a small penalty. Finally, the third 

one is swap contract in which we pay a very small penalty for returning the vehicle 

and selecting other vehicle. In addition, in Figure 5.1, at each node, we have a vector 

of stochastic processes which are fuel prices, CO2 prices, mileage driven, and fuel 

consumption for fossil fuel technologies, per 100 km. 

Table 5.1(a). The indices, decision variables of the model.  

i∈I={fosseil fuels, hybrids, and electric}  

a∈A= {1, 2,.., A} index for age of the vehicles 

n∈N= {1,2,…,N }index for nodes in scenario tree 

t∈T= {1, 2, .. ,T}index for time periods in year over planning horizon 

st∈S= {1, 2,.., St } index for number of branches (states)  at each stage 

c∈C={1,2,…,C} index for different type of contracts  

,n mΨ  : The tree structure for parent nodes n and child nodes m 

,t nη : The tree structure for parent nodes n and stage t 

xniac: The total number of vehicles with technology i, age a, contract c currently 

leased at node n  

y+
nic: The number of new vehicles with technology i, contract c, which company 

leases at node n 

y-
niac: The number of new vehicles with technology i , age a , contract c, which 

company returns  at node  n 

n
βα : Value at risk at confidence level of β at node n  

nΠ  : Auxiliary variable for linearization of minimum function  

n
βφ : Conditional value at risk at confidence level of β at node n 

zn: Auxiliary stochastic variables for loss function at node n  
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Table 5.1(b). Parameters of the model 

 

W: Conversion coefficient of mileage to km 

ρ  : Coefficient for relation between value and price of an option 

ω: Parameter for trade-off of risk and cost in the objective function 

β : Confidence level for calculating CVaR and VaR 

Ln: Loss function at node n 

niacV o : Value of the option for technology type i, age a, contract c at node n 

Pniac : Premium of the option for technology type i, age a, contract c at node n 

iacγ : Penalties for returning the vehicles with technology i, age a, contract c  

cθ  : The coefficient vector for penalties of different contacts c 

δ  : The annual learning rate for the technological development of batteries for EVs 

hn: The initial condition of the fleet system with fossil fuel technology at node n 

fni: Fuel price for technology i, at node n 

on: Fuel consumption at node n 

Dn: Monthly mileage driven at node n 

Qnia : Expected cost per vehicle for technology i, age a, at node n 

Qn: Total expected cost function at node n 

rni: Running cost per 100 km for technology i, at node n  
p
nc : The CO2 prices at each node n 

ce: The CO2 emissions (gr) per km for electrical technology  
g
ic : The CO2 emissions (gr) per litre for fossil fuel and hybrid technology  

li: The monthly lease cost for each technology i  

M e: The monthly lease cost for batteries of EVs 

λni: The total annual running cost per vechile for technology i, at node n 

μi: The total annual fixed cost per vehicle for technology i  

 

We consider five technologies: fossil fuels (petrol, diesel), hybrids (petrol, diesel), 

and EVs. In equation (5.1) we calculate the running cost for fossil fuel and hybrid 

vehicles, per 100 km, rni, at each node. In equation (5.1), on denotes the fuel 
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consumption of fossil fuels, and hybrids, per 100 km, at each node. In addition, the 

running cost for EVs, per 100 km, rni, is calculated using equation (5.2). We also 

take into account the cost of fuel prices for each technology and CO2 emissions, at 

each node, in (5.1) and (5.2), by including the parameters fni and p
nc , respectively. 

Furthermore, cg denotes the CO2 emissions (gr/litre) for fossil fuels, and hybrids and 

ce shows the CO2 emissions for EVs per km. Finally, W is the conversion coefficient 

from miles to km. In Table 5.1 (a) and Table 5.1 (b) the indices and decision 

variables and parameters of the model are also represented. 

 

6( /10 )                    p g
ni n ni n ir o f c c n N= + ∀ ∈ , i = fossil fuels, hybrids                   (5.1) 

 

6+ 100(c /10 )                   e pni
ni n

fr c n N
W

= ∀ ∈ , i = electric                                       (5.2) 

 

As a result, based on equations (5.1) and (5.2), we calculate the total annual running 

cost per vehicle at each node, niλ , using equation (5.3). In equation (5.3), Dn 

represents mileage driven at node n. 

12 /100                           ni ni nWr D n Nλ = ∀ ∈ ,i                                                       (5.3)  

 

The total investment (fixed) cost per vehicle is represented by (5.4) for fossil fuels 

and hybrid technologies and by (5.5) for EVs. As we take into account the leasing 

contracts for providing different types of vehicles in the fleet system, we use the 
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monthly lease cost which is represented by li, to obtain the fixed cost at each node. 

Moreover, for EVs we have extra investment cost which is monthly lease cost for 

batteries which is presented in equation (5.5) by Me.  

 

12                i ilμ =                          i = fossil fuels, hybrid                                      (5.4)    

                                                                                                                                                          

12( )i i el Mμ = +                             i = electric                                                         (5.5) 

 

The penalty, iacγ , for returning the vehicles, is represented in equation (5.6). 

 

( )      <iac c iA a a Aγ θ μ= −                                                                                         (5.6)    

    

 In equation (5.6), cθ  represents the coefficient vector of penalties for different type 

of contracts and A is the maximum age of vehicle during leasing period. Moreover, 

equations (5.7)-(5.9) show the value of different options. 

 

0
1 0niaV =                                                                                                                    (5.7) 

 

0
2 2max(0, )nia nia iaV Q γ= −                                                                                         (5.8) 
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0

3 3max(0, min( ) )nia nia nij niai j
V Q Q γ

≠
= − −                                                                      (5.9) 

 

Equation (5.7) represents the value of contract without any option i.e., base contract. 

Equations (5.8) and (5.9) represent the value of the contracts including return and 

swap options, respectively. In addition, in equations (5.7)-(5.9), Qnia is the expected 

cost per vehicle for each technology, at age a, which is calculated by equation (5.10). 

 

( 1)
( , )

1
nia i ni mi a

n mt

Q Q
S ψ

μ λ += + + ∑                                                                            (5.10)  

  

Finally the premium of each option, Pniac, is obtained by equation (5.11),      

 

0
niac niacP Vρ=                                                                                                           (5.11)    

 

In which ρ is a parameter between 0 and 1.                                    

Our objective is to minimize the weighted average of CVaR and cost at the root 

node. Each firm aims to solve the mixed integer multi-stage stochastic programming 

(MIP) model in equations (5.12)-(5.25): 
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1 1
x , , ,

(1 )
niac nic niac ny y

Min Q
β

β

α
ω ω φ

+ −
+ −                                                                                  (5.12) 

 

s.t. 

1 1   i c n
c

x h n= ∀∑ , i=fossil fuel                                                                               (5.13) 

 

1    ,nic ni cy x n N i I+ = ∀ ∈ ∈                                                                                       (5.14) 

 

, and 0      if -3, =1nic niac t ny y n t T a+ − = ∀ ∈Ω ≥                                                     (5.15)            

  

( 1) ,( )   , ( , )miac mic ni a c miac n nnx y x y a A n m+ −
−= + − ∀ ∈ ∀ ∈Ψ                                         (5.16)         

                                    

,      ,  3niac n t n
i a c

x h n t T≥ ∀ ∈Ω ≤ −∑∑∑                                                             (5.17)     

                                                                                    

6
1 1 3

2

2 2 1 3
2 2

( ) /10 + ( ( )) 

( ) - ( )        N

A

n ni i niac niac ia nia nia
i a c i a

A A

ia nia ia ia n
i a i a

L P x y y

y n

λ μ γ

γ γ γ

− −

=

−

= =

= + + +

+ − Π ∀ ∈

∑∑∑ ∑∑

∑∑ ∑∑
                       (5.18) 

      

3
2

    
A

n nia
i a

y n N−

=

Π ≤ ∀ ∈∑∑                                                                                     (5.19) 

 

    n nic
i c

y n N+Π ≤ ∀ ∈∑∑                                                                                      (5.20)     
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,
( , )

1 ( )     ( , )n n m n m
n mt

Q L Q n m
S Ψ

= + ∀ ∈Ψ∑                                                              (5.21)     

                           

,     ( , )m m n n mz L n mβα≥ − ∀ ∈Ψ                                                                             (5.22) 

 

,
( , ) ( , )

1 1( ) ( )      ( , )
(1 )n n m m n m

n m n mt t

z n m
S S

β β βφ α φ
β Ψ Ψ

= + + ∀ ∈Ψ
− ∑ ∑                           (5.23) 

 

,0        nn t n
βα = ∀ ∈Ω                                                                                            (5.24) 

 

, , , , ,  Rniac nic naic n n nx y y Z zβα+ − + +Π ∈ ∈                                                                    (5.25)     

                                                        

The objective function (5.12) minimizes the weighted average of expected cost, Q1, 

and CVaR, 1
βφ , at the root node. Equation (5.13) shows the initial condition of the 

fleet system at each node, hn, which is composed of new leased fossil fuel vehicles, 

should be equal to total number of the vehicles with different type of contracts,

1 1i c
c

x∑  , at the root node. In equation (5.14) we determine the number of new leased 

vehicles with specific contract, at each node, y+
nic, required to replace the segment of 

new vehicles of the total vehicles in the fleet system, xni1c, due to retirement of the 

older vehicles at the corresponding node. In addition, equation (5.15) shows that 

planning horizon for decision variables, y+
nic and niacy− is four years and after that 

there will be no new leased vehicles, and returned vehicles in the fleet system. In 
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addition, the vehicles that are at age one (a=1) cannot be returned.  Equation (5.16) 

shows that the total number of the vehicles, at each child node, xmiac, is equal to 

number of new leased vehicles, y+
mic, plus the number of vehicles which are left ,

( 1)ni a c miacx y−
− − , after returning vehicles, miacy− ,with age more than one. Moreover, 

equation (5.17) represents that the total number of vehicles for all technologies, 

contracts, and ages, niac
i a c

x∑∑∑ , at each node , should be greater than or equal to 

the number of vehicles which are needed, nh , at the corresponding node during first 

four years. Equation (5.18), shows the total loss function (total cost), Ln, at each 

node. The first term in equation (5.18), 6( ) /10ni i niac niac
i a c

P xλ μ+ +∑∑∑ , represents 

the sum of running cost, λni, fixed cost, μi , premium of the options, niacP , at the 

corresponding node. The second term, 1 1 3
2
( )

A

nia nia
i a

y yγ − −

=

+∑∑ , shows the penalty cost 

for returning the vehicles for base and swap contracts, and the third term, 

2 2
2
( )

A

nia
i a

yγ −

=
∑∑ , represents the penalty cost for contracts with option of return. 

Finally, the fourth term, 1 3( )  nγ γ− Π , shows the  amount of money that is given back 

when the swapping option is selected. Equations (5.19-5.20) represent constraints for 

linearization of minimum function, 3
2

min( , )
A

n nic nia
i c i a

y y+ −

=

Π = ∑∑ ∑∑ , used in equation 

(5.18). Equation (5.21) presents the recursive formula for calculating the total 

expected cost function, at each node, Qn, which is equal to the loss function, Ln, at 

the corresponding node plus the average of cost functions, 
( , )

1 ( ) m
n mt

Q
S Ψ
∑ , in 

successor nodes. In order to take into account the time consistency issue of CVaR 

(Shapiro, 2011), we have used equations (5.22) and (5.23) which have been proved 
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before in Chapter 4. In addition, equation (5.24) shows that the Value at Risk (VaR),

n
βα  , at the final stage should be zero due to the fact that at the final stage there is no 

uncertainty and all values of stochastic processes are realized. Finally, (5.25) is the 

constraint for the integer values of, xniac, y+
nic, niacy− , nΠ , and non-negative, n

βα  and 

zn, decision variables. 

 

5.3 Analyzing the Main Properties of the Model 

In this section we want to consider the impact of using option contracts on the 

expected cost of the fleet. So, we want to test if by using option contracts, we can 

reduce the expected cost of the fleet system. This is the conventional goal of risk 

neutral fleet managers. In order to provide a formal proposition for it, first in 

Proposition 5.1 we provide a prerequisite proposition and then after that we proceed 

for the main proposition related to the effect of using option contracts on the 

expected cost of the fleet in terms cost efficiency. 

Let nicLΔ  stand for the change in the loss function per vehicle, type i, for contract c, 

at node n, compared to the case without using any contract c, niacQΔ  represent  the 

change of expected cost per vehicle for contract c, at age a, at node n, compared to 

the case without using any contract c, ( )micE LΔ  be the expected change of loss 

function per vehicle, type i, at child m, at age one, compared to the case without 

using any contract c, and 2( )
m c

EE LΔ  represent the expected of expected change of 

loss function per vehicle, type i, at child node of child node m, at age 2, compared to 

the case without using any contract c, and .... ( )Am ic
EE E LΔ  represent the expected of 
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expected change of loss function per vehicle, type i, at child node of child node m, at 

age A, compared to the case without using any contract c  

 

Proposition 5.1: If 3 2 10  ia ia iaγ γ γ< < < then the change of the expected cost at 

parent node n, niacQΔ , for contract c , at age a, compared to the case without using 

any contract c is :  

2 1( ) ( ) ... .... ( ) .... ( )A Aniac nic mic m ic m ic m ic
Q L E L EE L EE E L EE E L−Δ = Δ + Δ + Δ + Δ + Δ                                         

 

Proof: In order to calculate the values of niacQΔ , based on equation (5.18), we can 

obtain (5.26). Because (5.26) is a recursive equation, in which we can replace the 

value of ( )miacE QΔ  by using equation (5.18) for child node m, and if we continue it 

until the maximum age of the contract, A, we can derive (5.27).  

( , )

1 ( ) ( )niac nic miac nic miac
n mt

Q L Q L E Q
S Ψ

Δ = Δ + Δ = Δ + Δ∑                                          (5.26) 

2( ) ( ) ... ... ( )Aniac nic mic m c m ic
Q L E L EE L EE E LΔ = Δ + Δ + Δ + + Δ  ■                            (5.27)       

Now, we proceed for the main proposition related to the effect of using option 

contracts on the expected cost of the fleet in terms cost efficiency.                                     

Let b
niacV  denote the ex-ante value of the option contract c, for technology i, at age a, 

and at node n and ( )A a icλ
−

−  denote the average of running cost for the remaining 

periods at age a, for technology i, and option contract c. 
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Proposition 5.2: If 3 2 10  ia ia iaγ γ γ< < <  then  

( )( ) ( )[ )]   ,  2b
A a icniac niac niac i c iV Q A a c aγ λ μ θ μ

−
+ +

−= Δ − = − + Δ − ∀ ≥  

Proof: In order to calculate the values of b
niacV  for each contract, we use equation 

(5.28) in which we have benefited from the result of Proposition 5.1 in equation 

(5.27). In equation (5.28), nicLΔ , micLΔ ,…, and Am ic
LΔ  in all terms have two 

components. The first one is icμΔ  which denotes the change in the annual fixed cost 

per vehicle type i, for contract c compared to the case without using any contract c , 

and the second component is nicλΔ , micλΔ , 2m ic
λΔ ,…, and Am ic

λΔ , which represent 

the change of the annual running cost per vehicle, at node parent n, child node m, 

child node of child node m , and so on, for contract c compared to the case without 

using any contract c. Now, based on equation (5.28), we can derive (5.29) in which 

the first term, ic nicμ λΔ +Δ , equal to zero because we do not return any vehicle at age 

one and the second term denotes the expected change of cost per vehicle which is 

incurred by having contract c, age 2, and so on. 

Moreover, if we let ( )nicE λΔ = ( )A a icλ
−

− , we can derive (5.30) from which we obtain,

b
niacV , (5.31).  

 
2 1

2

( ) ( ) ... .... ( ) ... ( )

( ) ( ) .... ( )   
A A

A

niac nic mic m c m ic m ic

ic nic ic mic ic icm ic m ic

Q L E L EE L EE E L EE E L

E EE EE Eμ λ μ λ μ λ μ λ
−Δ = Δ + Δ + Δ + Δ + Δ

= Δ + Δ + Δ + Δ + Δ + Δ + Δ + Δ
 (5.28)                 

2( ) ( ) .... ( ), 2Aniac ic mic ic icm ic m ic
Q E EE EE E aμ λ μ λ μ λΔ = Δ + Δ + Δ + Δ + Δ + Δ ∀ ≥     (5.29)                         

( )( )[ ],     2A a icniac icQ A a aλ μ
−

−Δ = − + Δ ∀ ≥                                                           (5.30)                            
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( )( ) ( )[ )] ,  2b
A a icniac niac iac ic c iV Q A a aγ λ μ θ μ

−
+ +

−= Δ − = − + Δ − ∀ ≥          ■             (5.31) 

                                                               

Equation (5.31) explains that if we return a vehicle with contract c , at age a, at node 

n, the amount which is saved , compared to the case without using any contract c , is 

equal to change of expected cost per vehicle of type i, contract c, at parent node n, 

and at age a, minus the penalty, iacγ , which is incurred if the vehicle is returned by 

contract c. The penalty can be obtained by equation (5.6) for each contract. The 

amount which is saved is equal to the ex-ante value of the option contract c, i.e., 

b
niacV .  

Now, we can conclude that the total cost of the fleet system decreases by using 

option contact c, compared to the case without using any contract c , if the sum of 

the ex-ante values of b
niacV  for all the vehicles for any contract c, has a positive value. 

Next, we obtain the condition under which one of the option contracts is chosen 

instead of the other one. The general conclusion is that by selecting the appropriate 

values of the parameters, we have the flexibility for choosing different option 

contracts. This is a very important issue which gives flexibility for managers to 

choose the contract which is the matched with their fleet management system 

condition. 

Let g
niacV  denotes for the ex-post value of option contract c, technology i, at age a, at 

node n, and cτ  represents the probability that contract c is used. Then for ex-post 

value of option contracts, we use (5.32). In equation (5.32), niacP  is the premium of 

option contract c, which can be obtained by equation (5.11). 
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( )   g b
niac niac niac cV V P cτ+= − ∀                                                                                   (5.32)                           

 

Proposition 5.3: If 3 2 10 ia ia iaγ γ γ< < < , 1 ,k j c≤ ≤  , then the contract with ex-post 

value of g
niajV is used instead of the contract with ex-post value of g

niakV when 

( )

( )

[ ]

[ )]

A a ij ij j i niaj k

jA a ik ik k i

Pλ μ θ μ τ
τλ μ θ μ

−
+

−

−
+

−

+ Δ − −
>

+ Δ −
 

 

Proof: The general condition in which the contract with the option j is used instead 

of contract with option k can be written in (5.33). Equation (5.33) explicitly 

represents that if contract with the option j is used instead of the contract with option 

k, then its ex-post value, should be higher. Then, by using equations (5.31) and 

(5.33), we can derive (5.34).  

( ) ( )g g b b
niaj niak niak niak k niaj niaj jV V V P V Pτ τ+ +> ⇒ − > −                                                   (5.33)                          

( )

( )

[ ]

[ )]

A a ij ij j i niaj k

jA a ik ik k i niak

P

P

λ μ θ μ τ
τλ μ θ μ

−
+

−

−
+

−

+ Δ − −
>

+ Δ − −
                                                 ■                  (5.34)                         

Now another question is that: what is the effect of using contracts on the risk (CVaR) 

of the fleet management system. The answer to this question addresses the concern 

for risk averse fleet managers. Moreover, from methodological perspective it is one 

our contributions in this Chapter which considers the interaction of CVaR and using 

option contracts on the fleet replacing decisions. The next proposition proves that the 

value of CVaR decreases by using option contracts. 
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Proposition 5.4: Let n
βφ  and (0)n

βφ   represent the value of CVaR with and without 

contracts, respectively. Then we have, (0) 0       , .n n n N c Cβ βφ φ− ≤ ∀ ∈ ∈  

Proof: We proceed by using proof by contradiction. So, let’s assume that (5.35) is 

true. 

(0) 0,    , .n n n N c Cβ βφ φ− ≥ ∀ ∈ ∈                                                                             (5.35)                           

Then the optimal choice is to not use contracts and we have a lower CVaR without 

options, (0)n
βφ . On the other hand, if we have option to use the contracts and 

(0)n n
β βφ φ<  then we have a lower CVaR, when we exercise the options, and this will 

equal, n
βφ . Therefore, by having the option to exercise contracts we get (0)n n

β βφ φ≤ .                        

■            

So far we have considered the effect of using the option contracts on the expected 

cost and on the CVaR. Now we want to answer the question what is the change of 

value per year for the swap option of leasing EVs instead of fossil vehicles, if we 

consider the technological change of batteries of EVs which is expected to be 

happened in the coming years. This is also an interesting issue which can be a good 

justification for considering EVs in the fleet replacement decisions for managers by 

using swap option. Before answering this question, we provide a proposition in 

which we can obtain the time that takes EVs to be more efficient than other 

technologies and then we present another proposition to study the idea that we have 

mentioned.  

Now, we are ready to provide a proposition for calculating the time during our 

planning horizon in which EVs are more cost efficient than other technologies. Let 
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0eμ  stand for the annual fixed cost of the EVs, at time zero, teμ  denote the annual 

fixed cost of EVs in year t, and *( , )teg tμ  represent the density function of the First 

Passage Time (FTP) for the stochastic process teμ . The first passage time is the 

expected time when teμ  crosses a threshold (Withmore, 1986).  

 

Proposition 5.5: Let i stand for fossil fuel or hybrid vehicles. The expected number 

of years for EVs to be more cost efficient than technology i is: 

[ ]
0

12( /100)- /100,  i t ti t tetg l WD r WD r t dt
∞

+∫   

Proof: Because in the tree structure, in each stage t, we can map the set of nodes n, 

using ,t nη , we can use t and n and in (5.36), interchangeably. Now, in order to 

calculate the first passage time, we should equal the total annual cost of EVs with 

other technologies, i.e., 

*
,  ,te te ti ti t nt nμ λ μ λ η+ = + ∀ ∈ , i = fossil fuels, hybrids                                        (5.36)                         

Then by using equations (5.3), (5.4), and (5.36), we drive, 

*
, =12( /100)- /100   ,te ti ti te i t ti t te t nl WD r WD r t nμ μ λ λ η= + − + ∀ ∈                          (5.37)                         

All the parameters in (5.37) are defined in Tables 5.1(a) and 5.1(b). Then, the 

expected first passage time equals:  

[ ]*

0 0

( , ) 12( /100)- /100,  te i t ti t tetg t dt tg l WD r WD r t dtμ
∞ ∞

= +∫ ∫         ■                           (5.38)                         
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Next we want to analyze the change of the value of option to swap a fossil fuel or 

hybrids for leasing EVs per year, if we consider the technological change of batteries 

of EVs. The reason for doing this is that we can swap a fossil fuel vehicle for EVs 

and we can reduce the expected cost. As we mentioned before this is also an 

interesting issue which can be a good justification for considering EVs in the fleet 

replacement decisions for mangers by using the swap option. 

 

Proposition 5.6: Let tieμΔ  denote the difference of change of annual fixed cost of 

EVs and technology i, in year t, and T represents the length of the planning horizon. 

The value of the option to swap a fossil fuel or hybrid vehicle for EVs increases, per 

year, by 3   tia tieV T μΔ = Δ .                                                 

 

Proof: The value of option at time zero to swap a fossil fuel or hybrids for EVs by 

using equations (5.9) and (5.10) is: 

0
3 3

( 1) ( 1) 3
( , ) ( , )

( min( ) )

1 1( )

t
nia nia nij niai j

i ni mi a e ne me a nia
n m n mt t

V Q Q

Q Q
S Sψ ψ

γ

μ λ μ λ γ

+

≠

+
+ +

= − −

= + + − − − −∑ ∑
                          (5.39) 

Because in the tree structure, in each stage t, we can map the set of nodes n, using

,t nη , we can use t and n and in (5.40), interchangeably. In order to calculate the 

change in the value of swap option at time t, because the only change during the 

planning horizon, in (5.39), is the fixed cost of EVs, we can write: 
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0
3 3 3

2

1 1 ( 1)t

T
t t

tia nia nia tie tie tie tie t
tt t

V V V T S
S S

μ μ μ μ
=

Δ = − = Δ + Δ = Δ + − Δ∑ =   tieT μΔ  ■     (5.40)   

                    

5.4 A Case Study on Sustainable Fleet Replacement with Flexible Leasing 

Contracts 

At each stage (year), we want to have the minimum number of vehicles in the fleet 

system, taking into account that the contract of the vehicles will be retired by the end 

of the fourth year. Moreover, we assume an initial condition of the 2013 fleet system 

consisting of 2369 diesel vehicles with different capacities (small, light, medium), 

which all of them are at age one, i.e., new leased vehicles. Because the light vans 

characteristics are between small and medium vans, we selected them for 

considering the optimal policies. Moreover, for value of ω, we assumed ω equals to 

0.5 in which the weights for expected cost and CVaR in the objective function are 

equal.  All the values of parameters needed for the model are obtained from Tables 

4.2, 4.3, 4.4, and 4.6 in Chapter 4. 

There are options for returning or swapping the vehicles that are at age two, three, 

and four. Indeed, the vehicles that are at age one or new leased vehicles cannot be 

returned or swapped. 

Given these constraints, we want to minimise the weighted average of total expected 

costs and CVaR during the planning horizon. Our goal is to determine the optimal 

policy from 2013 to 2016. Note that in order to calculate this policy we need to 

continue the calculation for the stochastic variables from 2017 to the end of 2020 

(until the end of life of the vehicles leased in the period of analysis). 
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5.5 Result of Optimal Policies for Technologies in Light Vans 

We considered three values of ρ equal to 0, 0.1, and 0.25 for relation between value 

and premium of an option. Moreover, the coefficient vector for penalties of different 

contacts, θc, is equal to 1, 0.5, and 0.1 for contracts with no option (c = 1), return 

option (c = 2), and swap option (c = 3), respectively. We denote different 

technologies by D, P, H-P, H-D, and E for Diesel, Petrol, Hybrid-Petrol, Hybrid-

Diesel, and Electric, respectively. Finally, the results are converged by using 10165 

scenarios. The results are shown in Tables 5.2, 5.3, and 5.4. 

As seen from Table 5.2, when ρ equals zero, i.e., the options are free, we have 

different combination of contacts for leasing of vehicles. In addition, diesel 

technology has the biggest portion of leased vehicles in different contracts. 

Moreover, as expected, because the swap contract has the lowest penalty, we have a 

lot of swapped vehicles. For example, in 2014 we have 932 diesel vehicles at age 2, 

which are swapped by other contacts with the same technology. However, we do not 

have any returned vehicles with base contract; because it has the highest penalty. 

Now we change the value of ρ to 0.1, i.e., we should pay for return and swap 

contracts, 10% of their value which is calculated in equations 5.8-5.9. The results are 

represented in Table 5.3. As seen, the vehicles are leased with base contract and 

contract with swap option. In addition, we have returned vehicles with base contract 

and contract with swap option. However, there are no returned vehicles with option 

to return due to the higher penalty of them in comparison with swap contracts. The 

interesting observation which is retuned vehicles with base contract, shows the fact 

that there is a trade-off between penalty and price of an option. Finally, when ρ is 

0.25 or more, as represented in Table 5.4, we have just lease and retuned vehicles 



www.manaraa.com

172 

with base contract. In addition, there is no swap of the vehicles. We have provided a 

formal proof for these results in Propostion 5.3.  

 

Table 5.2: Optimal policy for lights vans, ω=0.5, 10165 scenarios, θc= (1, 0.5, 0.1), 
and ρ=0 

      Number of Vehicles 

      Leased Returned  Swapped

Year  Tech.  age  C1 C2 C3 C2 

2013  D  1  34 1043    
2014  D  1  210 212 551     

2  6  932
2015  P  1  1 1     

D  1  38 39 31     
2  4  7
3  11  90

2016  P  1  1     
D  1  31     

2  2  2
3  4  2
4  8  12

 

 

Table 5.3: Optimal policy for lights vans, ω=0.5, 10165 scenarios, θc= (1, 0.5, 0.1), 
and ρ=0.1 

      Number of Vehicles 
    Leased Returned Swapped

Year  Tech.  age  C1 C3 C1  
2013  D 1  84 993  
2014  D 1  1028 3  

2  7  990
2015  P 1  1  

D 1  20  
2  3  1
3  17  3

2016  P 1  1  
3  2   
4  18    

D 1  20  
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Table 5.4: Optimal policy for lights vans, ω=0.5, 10165 scenarios, θc= (1, 0.5, 0.1), 
and ρ=0.25 

      Number of Vehicles 
     

Leased 
 

Returned 
Year  Tech. age  C1 C1 
2013  D  1  1077  
2014  D  1  41  

2  7 
2015  P  1  5  

D  1  20  
3  29 

2016  P  1  3  
D  1  50  

4  54 

 

 

Moreover, as seen from Figure 5.2, the values CVaR and expected cost, when ρ 

equals to zero are less than the case when ρ is not equals to zero. The reason is that 

using contracts with options decreases the whole CVaR and expected cost. In other 

words, when more contracts are used in the fleet system, the total cost and CVaR are 

minimized. Indeed, the lower the price of the options, the lower the CVaR and 

expected cost. For example, when ρ decreases from 0.25 to 0, we have £3.56M 

(12%) decrease in CVaR and £2.99M (11%) in expected cost. We have proved these 

results in Propositions 5.2 and 5.4 regarding the effect of option contracts on the 

expected cost and CVaR, respectively. 
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Figure 5.2 The values of CVaR and Expected cost for Lights Vans, ω=0.5, 10165 

scenarios, θc= (1, 0.5, 0.1). 

 

5.6 Modeling the Effect of Technology Development  

In this section we want to consider the progress that is expected for the next decade 

for technology of batteries and EVs market and consequently its affect on the 

suggested portfolio system of the company. 

In the report provided by Book et al. (2009), they have predicted that in China, 

Japan, North America, and Western Europe, 1.5 million EVs will be sold in 2020, 

reflecting some 2.7 percent of the total automotive market in these regions. In terms 

of market segments, EVs are most likely to be introduced in the city car segment, 

where they will take the form of small city cars used mainly for commuting within 

the city. They predict that 18 percent of city cars across the four regions will be EVs 

in 2020 under the steady-pace scenario. 
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Figure 5.3: BCG outlook for Battery costs from 2009 to 2020, Dinger et al., 2010 

 

Dinger et al. (2010), predict that battery costs will decline steeply as production 

volumes increase. Individual parts will become less expensive thanks to experience 

and scale effects. Equipment costs will also drop, lowering depreciation. However, 

25 percent of current battery costs (primarily the costs of raw materials and standard, 

commoditized parts are likely to remain relatively independent of production and to 

change only modestly over time. Their analysis suggests that from 2009 to 2020, the 

price of NCA (Nickel Cobalt Aluminium) batteries which are mostly used in EVs 

will decrease 60 to 65 percent (Figure 5.3). 

Dinger et al. (2010) mention that the current cost of an automotive lithium-ion 

battery pack, as sold between $1000 and $1200 per KWh. They further predict that 

this price tag will decline to between $250 and $500 per KWh at scaled production. 
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As a result for 15Kw battery (Figure 5.3), the price is expected to drop from $16000 

to $6000. 

As we mentioned in Proposition 5.5, we can model the effect of technology 

development of EVs by a FTP process. So, we can use Ornstein–Unhlenbeck process 

(e.g., Kleindorfer et al., 2012) as FTP process to generate the scenarios at each node 

for monthly rents for EVs with appropriate parameters. We have used this stochastic 

process because; in the long run, the battery costs and monthly rents for EVs will be 

declined to a steady state case like other technologies. The Ornstein-Unhlenbeck 

process equation is represented by (5.48). 

_ 2
exp(- ) 1(1 exp( )) .

2ne e me
e z

δ
μ δμ δ μ σ

δ
−−= − − + +                                   (5.41) 

In (5.48) neμ  is the total annual fixed (investment) cost of EVs at each parent node 

n, meμ  is the total annual fixed cost of EVs per vehicle at root node, and 
_

eμ is the 

average total annual fixed cost of EVs per vehicle in the long run. According to 

Dinger et al. (2010), we assume to be 40% of the current fixed cost of EVs. In 

addition, δ is the annual learning rate, z is the quantile for standard normal 

distribution and, finally, σ  is the standard deviation of neμ . 

The results are represented in Tables 5.5, 5.6, and 5.7. The learning rate, δ, is equal 

to 1.2 (Dinger et al., 2010). For other parameters, we have taken into account the 

previous assumptions in Section 5. As seen from Tables 5.5, 5.6, and 5.7, the 

dominant technology for leasing is EVs. In some cases we also choose Diesel. But 

there are no optimal choices for other technologies for leasing. Next, we consider 

each case in more detail for corresponding optimal policies regarding the contracts.  
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As seen from Table 5.5, when ρ equals zero, i.e., the options are free, we have 

different combination of contacts for leasing of vehicles. Moreover, as expected, 

because the swap contract has the lowest penalty, we have a lot of swapped vehicles. 

For example, in 2014 we have 808 EVs at age 2, which are swapped. However, we 

do not have any returned vehicles like in Section 5.6, with base contract; because it 

has the highest penalty. 

Next, we change the value of ρ to 0.1, i.e., we should pay for return and swap 

contracts, 10% of their value which is calculated in equations 5.8-5.9. The results are 

represented in Table 5.6. As seen, the vehicles are leased with base contract, and 

contract with swap option, except in 2013 in which 32 diesel vehicles are leased with 

contract with return option. In addition, we have returned vehicles with base 

contract, and contract with swap option. However, there are no returned vehicles 

with option to return due to the higher penalty in comparison with swap contracts. 

The interesting observation which is retuned vehicles with base contract, shows the 

fact that there is a trade-off between penalty and price of an option. Finally, when ρ 

is 0.25 or more, as represented in Table 5.7, we have just lease and retuned vehicles 

with base contract. In addition, there is no any swap of the vehicles.  

Like the previous section the values for the CVaR and expected cost are reduced 

when ρ is decreased for three values of annual learning rate of technological change 

for EVs (Figure 5.4). For example, in the case of δ equal to 1.2, when ρ reduces from 

0.25 to 0, we have decrease of £2.11M (8%) in CVaR and £1.63M (7%) in expected 

cost. We have proved this result in Propositions 5.2. and 5.4. In addition, as seen in 

Figure 5.4, by increasing the learning rate from 1.2 to 2, because we have more EVs 
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in the fleet system and they more expensive than Diesel, the slope of increase in 

expected cost, when ρ increases from 0 to 0.25, is reduced.  

If we also compare the CVaR and expected cost for each corresponding ρ in Figures 

5.3 and 5.4, we conclude that we have a reduction in values of CVaR and expected 

cost for all values ρ, in Figure 5.4. For example, when ρ equals to 0, and δ equal to 

1.2, we have £3.03M (11%) reduction in CVaR and £0.83M (4%) in expected cost. 

Based on your previous we have found that the more EVs in the fleet system the 

lower CVaR. So, the reduction in CVaR is higher than expected cost. This is also 

true for other values ρ and δ. 

 

Table 5.5: Optimal policy for lights vans with technological development of EVs, 
ω=0.5, 10165 scenarios, θc= (1, 0.5, 0.1), δ=1.2, and ρ=0 

      Number of Vehicles 

      Leased Returned  Swapped

Year  Tech.  age  C1 C2 C3 C2 

2013 
D  1    46       

E  1    5  1026     

2014 
D  2        8   

E 
1  110 270 471  
2    808

2015 

D  3        24   

 
E 

1  47  51  100     

2          7 

3          171 

 
2016 

D  4        9   

E 

1  54 2 1  
2  1  5
3  2  3
4  2  33
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Table 5.6: Optimal policy for lights vans with technological development of EVs, 
ω=0.5, 10165 scenarios, θc= (1, 0.5, 0.1), δ=1.2, and ρ=0.1 

      Number of Vehicles 

    Leased Returned  Swapped

Year  Tech.  age  C1 C2 C3 C1 C2 

2013 
D  1  15  32         

E  1  105    925       

2014 

 
D 

1             

2  2 21 

E 
1  948  
2    890

2015 

D  3        8  10   

 
E 

1  59           

3        7    33 

 
2016 

D  4        3  1   

E 
1  21  
4  19   1

 

 

Table 5.7: Optimal policy for lights vans with technological development of EVs, 
ω=0.5, 10165 scenarios, θc= (1, 0.5, 0.1), δ=1.2, and ρ=0.25 

      Number of Vehicles 

    Leased Returned 

Year  Tech.  age  C1 C1 

2013 
D  1  45   

E  1  1032   

2014 
 
D 

1     

2  17 
E 1  51  

2015 

D  3    20 

E 
1  26   

3    6 

 
2016 

D  4    5 

E 
1  19  
4  19 
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Figure 5.4: The values of CVaR and Expected Cost for Lights Vans with Technological 
Development of EVs, ω=0.5, 10165 scenarios, θc= (1,0.5,0.1), δ=1.2,1.5, and 2 

 

5.7 Summary 

The leasing market is an important topic that should be considered for fleet 

replacement decisions. In terms contribution to the literature of fleet replacement, we 

have developed a new model in a dynamic setting, for considering the flexibility of 

different leasing contracts including uncertainties which are CO2 prices, fuel prices, 

mileage driven, and fuel consumption using real options methodology CVaR. Our 

approach is different from Kleindorfer et al. (2012), in terms of stochastic parameters 

in the model and different options for the leasing contracts and using CVaR.  

We have considered three contracts which are base (without option), contract with 

return option, and contract with option to swap the vehicle. Because the light vans 

characteristics are between small and medium vans, we selected them for 

considering the optimal policies. Moreover, for the value of ω, we assumed ω equals 

to 0.5 in which the weights for expected cost and CVaR in the objective function are 

equal. In addition, for the value of ρ, the coefficient for relation between value and 
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price of an option, we considered 0%, 10%, and more than 25% of the value the 

options for base, return, and swap contacts, respectively. Finally, for technological 

change of EVs we considered the annual learning rate, δ, of 12%. The main results 

of this chapter are: 

1. When the coefficient for relation between value and price of an option (ρ), 

equals zero, i.e., the options are free, we have different combination of 

contacts for leasing of vehicles. Moreover, as expected, because the swap 

contract has the lowest penalty, we have a lot of swapped vehicles. For 

example, in 2014 we have 847 diesel vehicles at age 2, which are swapped by 

other contacts with the same technology. However, we do not have any 

returned vehicles with base contract; because it has the highest penalty. 

2. When we change the value of the coefficient for relation between value and 

price of an option (ρ) to 0.1, i.e., we should pay for return and swap 

contracts, 10% of their value the results are changed. The vehicles are leased 

with base contract and contract with swap option. In addition, we have 

returned vehicles with base contract and contract with swap option. However, 

there are no returned vehicles with option to return due to the higher penalty 

of them in comparison with swap contracts. The interesting observation is 

retuned vehicles with base contract. Indeed, there is a trade-off between 

penalty and price of an option. Finally, when ρ is 0.25 or more, we have just 

lease and returned vehicles with base contract. In addition, there is not any 

swap of the vehicles.  

3. For considering the technological change of EVs, the main insights in terms 

of choosing optimal contracts are similar with the case of without considering 

the technological development of EVs for different values of the coefficient 
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for relation between value and price of an option (ρ). However, the optimal 

technologies are different in two cases. Indeed, EVs are the dominant 

technology for leasing when the effect of technology is taken into account. 

However, in the case of considering the model without the technological 

development of EVs, the dominant chosen technology is Diesels. Petrol 

technology is selected when we assume there is no technology development 

of EVs in few cases. Finally, Hybrid technology is not selected as the optimal 

choice in any cases. 

4. The values CVaR and expected cost, when the coefficient for relation 

between value and price of an option (ρ) equals to zero are less than the case 

when ρ is not equals to zero. The reason is that using contracts with options 

decreases the whole CVaR and expected cost. In other words, when all 

contracts are used in the fleet system, the total cost and CVaR are minimized. 

Indeed, the lower the price of the options, the lower the CVaR and expected 

cost. For example, when ρ decreases from 0.25 to 0, we have £3.56M (12%) 

decrease in CVaR and £2.99M (11%) in expected cost. 

5. The values for the CVaR and expected cost are also decreased with all three 

cases of ρ, when the case of technological change of EVs is considered. For 

example, in the case of δ equal to 1.2, when ρ reduces from 0.25 to 0, we 

have decrease of £2.11M (8%) in CVaR and £1.63M (7%) in expected cost. 

In addition, by increasing the annual learning rate for technological change of 

EVs from 1.2 to 2, because we have more EVs in the fleet system and they 

more expensive than Diesel, the slope of increase in expected cost, when ρ 

increases from 0 to 0.25, is reduced. 
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6. If we also compare the CVaR and expected cost for each corresponding the 

coefficient for relation between value and price of an option (ρ) with and 

without considering the impact of technological change of EVs, we conclude 

that we have a reduction in values of CVaR and expected cost for all values 

ρ, when technological change is considered. For example, when ρ equals to 0, 

and δ equal to 1.2, we have £3.03M (11%) reduction in CVaR and £0.83M 

(4%) in expected cost. Based on our previous research, we have found that 

the more EVs in the fleet system the lower CVaR. So, the reduction in CVaR 

is higher than expected cost. This is also true for other values ρ and annual 

learning rate (δ ) for the technological development of batteries for EVs. 

In the next Chapter we draw conclusions from this thesis in the three distinct 

models analyzed in the previous Chapters. Moroever, we present the 

contributions of this thesis in terms of policy and methodical implications. 
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CHAPTER 6 

 

 

CLOSURE 

 

In this Chapter, the thesis is summarized and the main conclusions are drawn and the 

main contributions of the thesis are highlighted. First, we explain the main 

contributions. 

6.1. Contributions 

The contribution of this thesis has two components, in fleet management policy and 

in the method used to apply it. 

At a policy level, this thesis addresses the effect of adoption of new technological 

advanced vehicles on the risk and expected cost of the fleet system of the companies. 

The idea for this issue arises from the need to study the adoption of new 

technological advanced vehicles in many companies in Europe and in the US, from 

an economic perspective. Because EVs are still in their infancy in terms of 



www.manaraa.com

185 

development and because they require a high investment cost, this study addresses 

this issue from a risk perspective, which has not been considered before. 

At a methodological level, this thesis presents three contributions: First, in Chapters 

3 and 4, it studies the new formulation of fleet problem by using two stage and multi 

stage stochastic programming and CVaR, which accounts the uncertainty in the 

decision process. In other words, one of the contributions of Chapters 3, and 4 is to 

consider risk and cost minimization by using CVaR, in a stochastic programming 

model, as part of the objective function of the company, which has not been 

considered before in the literature. Specifically,  because the objective of this 

stochastic program is to minimize the cost, and risk, simultaneously, we have 

minimized the weighted average of the total expected cost, and CVaR. That is, by 

changing an exogenous tradeoff parameter to different combinations of the total 

expected cost and CVaR, the risks over the planning horizon are minimized, 

depending on whether the focus is more on cost or on risk. 

Second, in Chapter 4, it models a recursive formulation of CVaR, which takes into 

account the time consistency issue in the dynamic setting. Indeed, Our approach is 

different from Shapiro (2009, 2011), where cost-to-go functoin concept was used to 

satisfy the time consistency principle, as we provide a recursive formulation of the 

CVaR for a scenario tree, explicitly computing the CVaR of the parent node as a 

function of the CVaR and expected conditional expectations of the extreme cost of 

the respective children nodes and we name it Recursive Expected CVaR (RECVaR).  

We have concluded that RECVaR provides more intuitive and robust results, 

because it takes into account the risks that exist in the middle stages of the scenario 

tree. However, Shapiro (2011) formulation is not sensitive to these kinds of risks. It 
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also differs from Boda and Filar (2006), in which the target-percentile approach was 

applied to consider the time consistency rule. So, our methodological contribution in 

Chapter 4 is suggestion a new formulation of time consistent CVaR. 

Third, in Chapter 5, it extends the model in dynamic setting with CVaR for 

considering flexibility in fleet replacement problem using contracts with different 

options. Indeed, there is also a gap in the literature which is to view the problem of 

sustainable fleet replacement, taking into account the inherent flexibility that can 

exist for leasing contracts due to existence of uncertainties, by using real options 

analysis. Our approach in this thesis is different from Kleindorfer et al. (2012), in 

terms of stochastic parameters in the model and different options for the leasing 

contracts. This is also a new approach in the literature which takes into account the 

interaction between using contracts and CVaR in the fleet system and has not been 

analyzed before. In addition, in Chapter 5 the impact of technological change of 

batteries of EVs is considered for the evaluation of options contracts. 

 

6.2 Concluding Remarks 

In all Chapters 3, 4, and 5 the risk drivers which are considered are fuel and CO2 

prices, mileage driven, and fuel consumption. In Chapter 3, we have considered a 

different distribution for the risk drivers in comparison with Chapters 4 and 5 due to 

the fact that the models are studied in different settings. Finally, all the vehicles used 

in the fleet system are leased. 

In Chapter 3 we have analyzed the importance of risk drives for EVs and diesel 

vehicles and comparison of the value of CVaR of EVs with diesel technology for 
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each case of risk driver. The results show that, if each stochastic process is 

considered separately, the most important risk driver for a diesel vehicle is the 

mileage driven, followed by fuel consumption, and lastly, fuel prices. For the case of 

EVs, the first important risk factor is mileage, followed by fuel prices and then CO2 

prices. In addition, for each stochastic process of fuel prices, mileage driven, and 

fuel consumption, the value of CVaR for EVs is less than for fossil fuel vehicles, 

under certain conditions.  

 In Chapter 4 we have considered the risk management issue when different types 

(capacity) of vehicles with different technologies are used in the fleet system. In this 

case each vehicle imposes a different risk depending on its characteristic. So, we 

have categorized (clustered) them based on two important risk drives which are 

mileage driven and fuel consumption and then we have studied the behavior of each 

category for each type and technology of vehicles. In addition, we have compared 

the behavior of each group with the case when they are not clustered (combined 

cluster). In Chapter 4, we have also considered the Hybrid vehicles. The main 

findings of model are as follows: a) for clusters with low mileage (500 miles/month) 

and average mileage (1000 miles/month) with fuel efficiencies of all type of 

vehicles, diesel is the dominant choice for risk or cost minimisation purposes. b) 

Petrol is an optimal choice for risk and cost minimisation in the in low and average 

mileage driven clusters of different type of vehicles. c) The Hybrid-petrol and 

Hybrid-diesel, which were also considered in the model, cannot compete with diesel 

technology in terms cost efficiency because of the high leasing/ownership costs. 

Their penetration ratio in different type of vehicles ranges between 1% and 3%. d) 

EVs generally contribute to high mileage clusters of different capacities of the 

vehicles. e) for all capacities, the risk per vehicle is reduced by clustering when 
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compared to combined clusters. However, the expected cost per vehicle is not 

reduced by clustering for clusters with high mileage profiles. 

In Chapter 5, we have studied another important issue which is related to leasing of 

vehicles. In reality fleet managers can lease vehicles with different options. So, we 

have extended the model in Chapter 4 by using different option contracts of base 

(contract with no option), return, and swap options. We have also considered the 

technological development of batteries of EVs expected during the life of contracts 

on the optimal replacement policies. The major findings are: a) using contracts with 

options decreases the whole CVaR and expected cost. In other words, when all 

contracts are used in the fleet system, the total cost and CVaR are minimized. b) EVs 

are the dominant technology for leasing when the effect of technology is taken into 

account. However, in the case of considering the model without the technological 

development of EVs, the dominant chosen technology is Diesel. Petrol technology is 

selected when we assume there is no technology development of EVs in few cases.  
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